Photosynthetic performance of the red alga Solieria pacifica (Solieriaceae) from two different depths in the sublittoral waters of Kagoshima, Japan

Abstract

Photosynthetic responses to photosynthetically active radiation (PAR) and temperature were examined in the red alga Solieria pacifica from deep (35 m) and shallow (5 m) portions of the sublittoral zone in Kagoshima, Japan. Dissolved oxygen sensors and pulse-amplitude modulated (PAM) fluorometry were used for the measurements of net photosynthesis, dark respiration rates, and photochemical efficiency. The photosynthetic performances of the deep- and shallow-water ecotypes provided substantial evidence of their adaptation to the ambient PAR and temperature conditions of their respective habitats. Both algal samples showed different temperature optima for photosynthesis: 19.5–19.9 °C for S. pacifica from Mageshima (MAG) and 18.6–27.0 °C for species from Yatsushiro Bay (YAT), that reflect the temperature ranges in the 35- and 5-m depths of the sublittoral zone, respectively. Maximum net photosynthetic rate (P max = 3.73 μg O2 gfw −1 min−1), compensation PAR (E c = 21 μmol photons m−2 s−1), and saturation PAR (E k = 131 μmol photons m−2 s−1) were higher in YAT S. pacifica than in MAG samples (P max = 1.55 μg O2 gfw −1 min−1, E c = 3 μmol photons m−2 s−1, E k = 15 μmol photons m−2 s−1), which can be attributed to the higher PAR levels experienced by the seaweeds occurring at depths of 5 m. The large depressions in effective quantum yields (Φ PSII) after chronic PAR exposures and failed recovery in maximum quantum yields (F v /F m) after dark acclimation of MAG S. pacifica suggest a greater tendency for photodamage in the deep-water ecotype. As for the shallow-water S. pacifica (YAT), complete recovery occurred only at 20 °C. Low temperature limitation may account for the decreased gross photosynthetic rates and delayed recovery of post-dark acclimation F v /F m of YAT S. pacifica at temperatures below their optimum, which can occur during winter.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Alexandrov GA, Yamagata Y (2007) A peaked function for modeling temperature dependence of plant productivity. Ecol Model 200:189–192

    Article  Google Scholar 

  2. Allakhverdiev S, Murata N (2004) Environmental stress inhibits the synthesis de novo of proteins involved in the photodamage-repair cycle of photosystem II in Synechocystis sp. PCC 6803. Biochim Biophys Acta Bioenerg 1657:23–32

    CAS  Article  Google Scholar 

  3. Allakhverdiev S, Kreslavski V, Klimov V, Los D, Carpentier R, Mohanty P (2008) Heat stress: an overview of molecular responses in photosynthesis. Photosynth Res 98:541–550

    CAS  Article  PubMed  Google Scholar 

  4. Beer S, Björk M, Beardall J (2014) Photosynthesis in the marine environment. Wiley and Sons, Iowa

    Google Scholar 

  5. Bolton JJ, Lüning K (1982) Optimal growth and maximum survival temperature of Atlantic Laminaria species (Phaeophyta) in culture. Mar Biol 66:89–94

    Article  Google Scholar 

  6. Bondu S, Deslandes E, Fabre MS, Berthou C, Yu G (2010) Carrageenan from Solieria chordalis (Gigartinales): structural analysis and immunological activities of the low molecular weight fractions. Carbohydr Polym 81:448–460

    CAS  Article  Google Scholar 

  7. Borlongan IA, Gerung GS, Kawaguchi S, Nishihara GN, Terada R (2017a) Thermal and PAR effects on the photosynthesis of Eucheuma denticulatum and Kappaphycus striatus (so-called Sacol strain) cultivated in shallow bottom of Bali, Indonesia. J Appl Phycol 29:395–404

    CAS  Article  Google Scholar 

  8. Borlongan IAG, Gerung GS, Nishihara GN, Terada R (2017b) Light and temperature effects on photosynthetic activity of Eucheuma denticulatum and Kappaphycus alvarezii (brown and green color morphotypes) from Sulawesi Utara, Indonesia. Phycol Res 65:69–79

    CAS  Article  Google Scholar 

  9. Cabello-Pasini A, Aguirre von Wobeser E, Figueroa FL (2000) Effect of solar radiation on photoinhibition of marine macrophytes in culture systems. J Photochem Photobiol 57:167–178

    Article  Google Scholar 

  10. Colombo-Pallotta MF, Rodríguez-Román A, Iglesias-Prieto R (2010) Calcification in bleached and unbleached Montastraea faveolata: evaluating the role of oxygen and glycerol. Coral Reefs 29:899–907

    Article  Google Scholar 

  11. Cosgrove J, Borowitzka MA (2011) Chlorophyll fluorescence terminology: an introduction. In: Suggett DJ, Prášil O, Borowitzka MA (eds) Chlorophyll a fluorescence in aquatic sciences, methods and developments. Springer, Dordrecht, pp 1–17

    Google Scholar 

  12. Davison IR (1987) Adaptation of photosynthesis in Laminaria saccharina (Phaeophyta) to changes in growth temperature. J Phycol 23:273–283

  13. Endo H, Okumura Y, Sato Y, Agatsuma Y (2017) Interactive effects of nutrient availability, temperature, and irradiance on photosynthetic pigments and color of the brown alga Undaria pinnatifida. J Appl Phycol 29:1683–1693

    CAS  Article  Google Scholar 

  14. Fairhead VA, Cheshire AC (2004) Seasonal and depth related variation in the photosynthesis-irradiance response of Ecklonia radiata (Phaeophyta, Laminariales) at West Island, South Australia. Mar Biol 145:415–426

    Google Scholar 

  15. Figueroa FL, Salles S, Aguilera J, Jiménez C, Mercado J, Viñegla B, Flores-Moya A, Altmirano M (1997) Effects of solar radiation on photoinhibition and pigmentation in the red alga Porphyra leucosticta. Mar Ecol Prog Ser 151:81–90

    CAS  Article  Google Scholar 

  16. Figueroa F, Conde-Alvarez R, Gomez I (2003) Relations between electron transport rates determined by pulse amplitude modulated chlorophyll fluorescence and oxygen evolution in macroalgae under different light conditions. Photosynth Res 75:259–275

    CAS  Article  PubMed  Google Scholar 

  17. Franklin LA, Seaton GGR, Lovelock CE, Larkum AWD (1996) Photoinhibition of photosynthesis on a coral reef. Plant Cell Environ 19:825–836

  18. Fujimoto M, Nitta K, Nishihara GN, Terada R (2014) Phenology, irradiance and temperature characteristics of a freshwater red alga, Nemalionopsis tortuosa (Thoreales), from Kagoshima, southern Japan. Phycol Res 62:77–85

    CAS  Article  Google Scholar 

  19. Gao X, Endo H, Taniguchi K, Agatsuma Y (2013) Combined effects of seawater temperature and nutrient condition on growth and survival of juvenile sporophytes of the kelp Undaria pinnatifida (Laminariales; Phaeophyta) cultivated in northern Honshu, Japan. J Appl Phycol 25:269–275

    Article  Google Scholar 

  20. Gevaert F, Creach A, Davoult D, Holl AC, Seuront L, Lemoine Y (2002) Photoinhibition and seasonal photosynthetic performance of the seaweed Laminaria saccharina during a simulated tidal cycle: chlorophyll fluorescence measurements and pigment analysis. Plant Cell Environ 25:859–872

    CAS  Article  Google Scholar 

  21. Häder DP, Lebert M, Mercado J, Aguilera J, Salles S, Flores-Moya S, Jiméz C, Figueroa FL (1996) Photosynthetic oxygen production and PAM fluorescence in the brown alga Padina pavonica measured in the field under solar radiation. Mar Biol 127:61–66

    Article  Google Scholar 

  22. Hanelt D (1996) Photoinhibition of photosynthesis in marine macroalgae. Sci Mar 60:243–248

    CAS  Google Scholar 

  23. Hanelt D, Melchersmann B, Wiencke C, Nultsch W (1997) Effects of high light stress on photosynthesis of polar macroalgae in relation to depth distribution. Mar Ecol Prog Ser 149:255–266

    CAS  Article  Google Scholar 

  24. Henley WJ (1993) Measurement and interpretation of photosynthetic light-response curves in algae in the context of photoinhibition and diel changes. J Phycol 29:729–739

    Article  Google Scholar 

  25. Itono H (1977) Studies on the ceramiaceous algae (Rhodophyta) from southern parts of Japan. Bibl Phycol 35:1–499

    Google Scholar 

  26. Jassby AD, Platt T (1976) Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol Oceanogr 21:540–547

    CAS  Article  Google Scholar 

  27. Karsten U, Bischof K, Wiencke C (2001) Photosynthetic performance of arctic macroalgae after transplantation from deep to shallow waters. Oecologia 127:11–20

    CAS  Article  PubMed  Google Scholar 

  28. Kobayashi M, Fujita D (2014) Can thallus color of red algae be used as an environmental indicator in shallow waters? J Appl Phycol 26:1123–1131

    CAS  Article  Google Scholar 

  29. Kuebler JE, Davison IR, Yarish C (1991) Photosynthetic adaptation to temperature in the red algae Lomentaria baileyana and Lomentaria orcadensis. Br Phycol J 26:9–19

    Article  Google Scholar 

  30. Long SP, Humphries S, Falkowski PG (1994) Photoinhibition of photosynthesis in nature. Annu Rev Plant Physiol Plant Mol Biol 45:633–662

    CAS  Article  Google Scholar 

  31. Marquardt R, Schubert H, Varela DA, Huovinen P, Henríquez L, Buschmann AH (2010) Light acclimation strategies of three commercially important red algal species. Aquaculture 299:140–148

    Article  Google Scholar 

  32. McHugh DJ (2003) A guide to the seaweed industry, FAO Fisheries technical paper – T441. FAO, Rome

    Google Scholar 

  33. Murano E, Toffanin R, Cecere E, Rizzo R, Knutsen SH (1997) Investigation of the carrageenans extracted from Solieria filiformis and Agardhiellia subulata from Mar Piccolo, Taranto. Mar Chem 58:319–325

    CAS  Article  Google Scholar 

  34. Nishiyama Y, Allakhverdiev SI, Murata N (2006) A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. Biochim Biophys Acta 1757:742–749

    CAS  Article  PubMed  Google Scholar 

  35. Platt T, Gallegos CL, Harrison WG (1980) Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J Mar Res 38:687–701

    Google Scholar 

  36. R Development Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org

  37. Roleda MY, Campana GL, Wiencke C, Hanelt D, Quartino ML, Wulff A (2009) Sensitivity of Antarctic Urospora penicilliformis (Ulotrichales, Chlorophyta) to ultraviolet radiation is life-stage dependent. J Phycol 45:600–609

    Article  PubMed  Google Scholar 

  38. Sagert S, Forster RM, Feuerpfeil P, Schubert H (1997) Daily course of photosynthesis and photoinhibition in Chondrus crispus (Rhodophyta) from different shore levels. Eur J Phycol 32:363–371

    Article  Google Scholar 

  39. Salvucci ME, Crafts-Brandner SJ (2004) Relationship between the heat tolerance of photosynthesis and the thermal stability of rubisco activase in plants from contrasting thermal environments. Plant Physiol 134:1460–1470

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Stan Development Team (2015) Stan: A C++ Library for Probability and Sampling, Version 2.6. URL: http://mc-stan.org

  41. Shinmura I, Tanaka T (2008) Useful algae in Kagoshima prefecture III: Rhodophyceae. Jap J Phycol 56:123–128 (in Japanese)

    Google Scholar 

  42. Terada R, Vo TD, Nishihara GN, Matsumoto K, Kokubu S, Watanabe Y, Kawaguchi S (2016a) The effect of photosynthetically active radiation and temperature on the photosynthesis of two Vietnamese species of Sargassum, S. mcclurei and S. oligocystum, based on the field and laboratory measurements. Phycol Res 64:230–240

    CAS  Article  Google Scholar 

  43. Terada R, Shikada S, Watanabe Y, Nakazaki Y, Matsumoto K, Kozono J, Saino N, Nishihara GN (2016b) Effect of PAR and temperature on the photosynthesis of the Japanese alga, Ecklonia radicosa (Laminariales), based on field and laboratory measurements. Phycologia 55:178–186

    Article  Google Scholar 

  44. Terada R, Watanabe Y, Fujimoto M, Tatamidani I, Kokubu S, Nishihara GN (2016c) The effect of PAR and temperature on the photosynthetic performance of a freshwater red alga, Thorea gaudichaudii (Thoreales) from Kagoshima, Japan. J Appl Phycol 28:1255–1263

    CAS  Article  Google Scholar 

  45. Vásquez-Elizondo RM, Enríquez S (2016) Coralline algal physiology is more adversely affected by elevated temperature than reduced pH. Sci Rep 6:19030. doi:10.1038/srep19030

    Article  PubMed  PubMed Central  Google Scholar 

  46. Vo TD, Nishihara GN, Shimada S, Watanabe Y, Fujimoto M, Kawaguchi S, Terada R (2014) Taxonomic identity and the effect of temperature and irradiance on the photosynthesis of an indoor tank-cultured red alga Agardhiella subulata from Japan. Fish Sci 80:281–292

    CAS  Article  Google Scholar 

  47. Vo TD, Nishihara GN, Kitamura Y, Shimada S, Kawaguchi S, Terada R (2015) The effect of irradiance and temperature on the photosynthesis of Hydropuntia edulis and Hydropuntia eucheumatoides (Gracilariaceae, Rhodophyta) from Vietnam. Phycologia 54:24–31

    CAS  Article  Google Scholar 

  48. Watanabe Y, Nishihara GN, Tokunaga S, Terada R (2014a) The effect of irradiance and temperature responses and the phenology of a native alga, Undaria pinnatifida (Laminariales), at the southern limit of its natural distribution in Japan. J Appl Phycol 26:2405–2415

    CAS  Article  Google Scholar 

  49. Watanabe Y, Nishihara GN, Tokunaga S, Terada R (2014b) The effect of irradiance and temperature on the photosynthesis of a cultivated red alga, Pyropia tenera (=Porphyra tenera), at the southern limit of distribution in Japan. Phycol Res 62:187–196

    CAS  Article  Google Scholar 

  50. Watanabe Y, Yamada H, Takayuki M, Yoshio K, Nishihara GN, Terada R (2016) Photosynthetic responses of Pyropia yezoensis f. narawaensis ( Bangiales, Rhodophyta ) to a thermal and PAR gradient vary with the life-history stage. Phycologia 55:665–672

    Article  Google Scholar 

  51. Webb WL, Newton M, Starr D (1974) Carbon dioxide exchange of Alnus rubra: a mathematical model. Oecologia 17:281–291

    Article  PubMed  Google Scholar 

  52. Yamada N, Terada R, Tanaka A, Horiguchi T (2013) Bispinodinium angelaceum gen. et sp. nov. (Dinophyceae), a new sand-dwelling dinoflagellate from the seafloor off Mageshima Island, Japan. J Phycol 49:555–569

    Article  PubMed  Google Scholar 

  53. Yoshida T (1989) Solieria pacifica (Yamada) Yoshida, comb. nov. (Soleriaceae, Rhodophyta) from Japan. Jap J Phycol 37:268–270

    Google Scholar 

  54. Yoshida T (1998) Marine algae of Japan. Uchida Rokakuho Publishing, Tokyo, p 1222 (in Japanese)

    Google Scholar 

Download references

Acknowledgements

We thank Captain A. Habano and the crew of T/S Nansei-Maru, Faculty of Fisheries, Kagoshima University, for their kind help in collecting the samples and the measurement of underwater PAR. We also thank Mr. Keisaku Shioya, Faculty of Fisheries, Kagoshima University, who conducted the preliminary experiment for this species in 2013. This research was sponsored in part by the Grant-in-Aid for Scientific Research (No. 25340012, No. 25450260, No. 26241027, No.16H02939) from the Japanese Ministry of Education, Culture, Sport, and Technology. All authors have provided consent. This research was part of the dissertation submitted by the first author in partial fulfillment of the Ph.D. degree.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Iris Ann Borlongan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Borlongan, I.A., Nishihara, G.N., Shimada, S. et al. Photosynthetic performance of the red alga Solieria pacifica (Solieriaceae) from two different depths in the sublittoral waters of Kagoshima, Japan. J Appl Phycol 29, 3077–3088 (2017). https://doi.org/10.1007/s10811-017-1209-0

Download citation

Keywords

  • Algae
  • Photoinhibition
  • Photosynthesis
  • Pulse-amplitude modulation (PAM)-chlorophyll fluorometry
  • Solieria pacifica