Journal of Applied Phycology

, Volume 29, Issue 6, pp 3077–3088 | Cite as

Photosynthetic performance of the red alga Solieria pacifica (Solieriaceae) from two different depths in the sublittoral waters of Kagoshima, Japan

  • Iris Ann BorlonganEmail author
  • Gregory N. Nishihara
  • Satoshi Shimada
  • Ryuta Terada


Photosynthetic responses to photosynthetically active radiation (PAR) and temperature were examined in the red alga Solieria pacifica from deep (35 m) and shallow (5 m) portions of the sublittoral zone in Kagoshima, Japan. Dissolved oxygen sensors and pulse-amplitude modulated (PAM) fluorometry were used for the measurements of net photosynthesis, dark respiration rates, and photochemical efficiency. The photosynthetic performances of the deep- and shallow-water ecotypes provided substantial evidence of their adaptation to the ambient PAR and temperature conditions of their respective habitats. Both algal samples showed different temperature optima for photosynthesis: 19.5–19.9 °C for S. pacifica from Mageshima (MAG) and 18.6–27.0 °C for species from Yatsushiro Bay (YAT), that reflect the temperature ranges in the 35- and 5-m depths of the sublittoral zone, respectively. Maximum net photosynthetic rate (P max = 3.73 μg O2 gfw −1 min−1), compensation PAR (E c = 21 μmol photons m−2 s−1), and saturation PAR (E k = 131 μmol photons m−2 s−1) were higher in YAT S. pacifica than in MAG samples (P max = 1.55 μg O2 gfw −1 min−1, E c = 3 μmol photons m−2 s−1, E k = 15 μmol photons m−2 s−1), which can be attributed to the higher PAR levels experienced by the seaweeds occurring at depths of 5 m. The large depressions in effective quantum yields (Φ PSII) after chronic PAR exposures and failed recovery in maximum quantum yields (F v /F m) after dark acclimation of MAG S. pacifica suggest a greater tendency for photodamage in the deep-water ecotype. As for the shallow-water S. pacifica (YAT), complete recovery occurred only at 20 °C. Low temperature limitation may account for the decreased gross photosynthetic rates and delayed recovery of post-dark acclimation F v /F m of YAT S. pacifica at temperatures below their optimum, which can occur during winter.


Algae Photoinhibition Photosynthesis Pulse-amplitude modulation (PAM)-chlorophyll fluorometry Solieria pacifica 



We thank Captain A. Habano and the crew of T/S Nansei-Maru, Faculty of Fisheries, Kagoshima University, for their kind help in collecting the samples and the measurement of underwater PAR. We also thank Mr. Keisaku Shioya, Faculty of Fisheries, Kagoshima University, who conducted the preliminary experiment for this species in 2013. This research was sponsored in part by the Grant-in-Aid for Scientific Research (No. 25340012, No. 25450260, No. 26241027, No.16H02939) from the Japanese Ministry of Education, Culture, Sport, and Technology. All authors have provided consent. This research was part of the dissertation submitted by the first author in partial fulfillment of the Ph.D. degree.


  1. Alexandrov GA, Yamagata Y (2007) A peaked function for modeling temperature dependence of plant productivity. Ecol Model 200:189–192CrossRefGoogle Scholar
  2. Allakhverdiev S, Murata N (2004) Environmental stress inhibits the synthesis de novo of proteins involved in the photodamage-repair cycle of photosystem II in Synechocystis sp. PCC 6803. Biochim Biophys Acta Bioenerg 1657:23–32CrossRefGoogle Scholar
  3. Allakhverdiev S, Kreslavski V, Klimov V, Los D, Carpentier R, Mohanty P (2008) Heat stress: an overview of molecular responses in photosynthesis. Photosynth Res 98:541–550CrossRefPubMedGoogle Scholar
  4. Beer S, Björk M, Beardall J (2014) Photosynthesis in the marine environment. Wiley and Sons, IowaGoogle Scholar
  5. Bolton JJ, Lüning K (1982) Optimal growth and maximum survival temperature of Atlantic Laminaria species (Phaeophyta) in culture. Mar Biol 66:89–94CrossRefGoogle Scholar
  6. Bondu S, Deslandes E, Fabre MS, Berthou C, Yu G (2010) Carrageenan from Solieria chordalis (Gigartinales): structural analysis and immunological activities of the low molecular weight fractions. Carbohydr Polym 81:448–460CrossRefGoogle Scholar
  7. Borlongan IA, Gerung GS, Kawaguchi S, Nishihara GN, Terada R (2017a) Thermal and PAR effects on the photosynthesis of Eucheuma denticulatum and Kappaphycus striatus (so-called Sacol strain) cultivated in shallow bottom of Bali, Indonesia. J Appl Phycol 29:395–404CrossRefGoogle Scholar
  8. Borlongan IAG, Gerung GS, Nishihara GN, Terada R (2017b) Light and temperature effects on photosynthetic activity of Eucheuma denticulatum and Kappaphycus alvarezii (brown and green color morphotypes) from Sulawesi Utara, Indonesia. Phycol Res 65:69–79CrossRefGoogle Scholar
  9. Cabello-Pasini A, Aguirre von Wobeser E, Figueroa FL (2000) Effect of solar radiation on photoinhibition of marine macrophytes in culture systems. J Photochem Photobiol 57:167–178CrossRefGoogle Scholar
  10. Colombo-Pallotta MF, Rodríguez-Román A, Iglesias-Prieto R (2010) Calcification in bleached and unbleached Montastraea faveolata: evaluating the role of oxygen and glycerol. Coral Reefs 29:899–907CrossRefGoogle Scholar
  11. Cosgrove J, Borowitzka MA (2011) Chlorophyll fluorescence terminology: an introduction. In: Suggett DJ, Prášil O, Borowitzka MA (eds) Chlorophyll a fluorescence in aquatic sciences, methods and developments. Springer, Dordrecht, pp 1–17Google Scholar
  12. Davison IR (1987) Adaptation of photosynthesis in Laminaria saccharina (Phaeophyta) to changes in growth temperature. J Phycol 23:273–283Google Scholar
  13. Endo H, Okumura Y, Sato Y, Agatsuma Y (2017) Interactive effects of nutrient availability, temperature, and irradiance on photosynthetic pigments and color of the brown alga Undaria pinnatifida. J Appl Phycol 29:1683–1693CrossRefGoogle Scholar
  14. Fairhead VA, Cheshire AC (2004) Seasonal and depth related variation in the photosynthesis-irradiance response of Ecklonia radiata (Phaeophyta, Laminariales) at West Island, South Australia. Mar Biol 145:415–426Google Scholar
  15. Figueroa FL, Salles S, Aguilera J, Jiménez C, Mercado J, Viñegla B, Flores-Moya A, Altmirano M (1997) Effects of solar radiation on photoinhibition and pigmentation in the red alga Porphyra leucosticta. Mar Ecol Prog Ser 151:81–90CrossRefGoogle Scholar
  16. Figueroa F, Conde-Alvarez R, Gomez I (2003) Relations between electron transport rates determined by pulse amplitude modulated chlorophyll fluorescence and oxygen evolution in macroalgae under different light conditions. Photosynth Res 75:259–275CrossRefPubMedGoogle Scholar
  17. Franklin LA, Seaton GGR, Lovelock CE, Larkum AWD (1996) Photoinhibition of photosynthesis on a coral reef. Plant Cell Environ 19:825–836Google Scholar
  18. Fujimoto M, Nitta K, Nishihara GN, Terada R (2014) Phenology, irradiance and temperature characteristics of a freshwater red alga, Nemalionopsis tortuosa (Thoreales), from Kagoshima, southern Japan. Phycol Res 62:77–85CrossRefGoogle Scholar
  19. Gao X, Endo H, Taniguchi K, Agatsuma Y (2013) Combined effects of seawater temperature and nutrient condition on growth and survival of juvenile sporophytes of the kelp Undaria pinnatifida (Laminariales; Phaeophyta) cultivated in northern Honshu, Japan. J Appl Phycol 25:269–275CrossRefGoogle Scholar
  20. Gevaert F, Creach A, Davoult D, Holl AC, Seuront L, Lemoine Y (2002) Photoinhibition and seasonal photosynthetic performance of the seaweed Laminaria saccharina during a simulated tidal cycle: chlorophyll fluorescence measurements and pigment analysis. Plant Cell Environ 25:859–872CrossRefGoogle Scholar
  21. Häder DP, Lebert M, Mercado J, Aguilera J, Salles S, Flores-Moya S, Jiméz C, Figueroa FL (1996) Photosynthetic oxygen production and PAM fluorescence in the brown alga Padina pavonica measured in the field under solar radiation. Mar Biol 127:61–66CrossRefGoogle Scholar
  22. Hanelt D (1996) Photoinhibition of photosynthesis in marine macroalgae. Sci Mar 60:243–248Google Scholar
  23. Hanelt D, Melchersmann B, Wiencke C, Nultsch W (1997) Effects of high light stress on photosynthesis of polar macroalgae in relation to depth distribution. Mar Ecol Prog Ser 149:255–266CrossRefGoogle Scholar
  24. Henley WJ (1993) Measurement and interpretation of photosynthetic light-response curves in algae in the context of photoinhibition and diel changes. J Phycol 29:729–739CrossRefGoogle Scholar
  25. Itono H (1977) Studies on the ceramiaceous algae (Rhodophyta) from southern parts of Japan. Bibl Phycol 35:1–499Google Scholar
  26. Jassby AD, Platt T (1976) Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol Oceanogr 21:540–547CrossRefGoogle Scholar
  27. Karsten U, Bischof K, Wiencke C (2001) Photosynthetic performance of arctic macroalgae after transplantation from deep to shallow waters. Oecologia 127:11–20CrossRefPubMedGoogle Scholar
  28. Kobayashi M, Fujita D (2014) Can thallus color of red algae be used as an environmental indicator in shallow waters? J Appl Phycol 26:1123–1131CrossRefGoogle Scholar
  29. Kuebler JE, Davison IR, Yarish C (1991) Photosynthetic adaptation to temperature in the red algae Lomentaria baileyana and Lomentaria orcadensis. Br Phycol J 26:9–19CrossRefGoogle Scholar
  30. Long SP, Humphries S, Falkowski PG (1994) Photoinhibition of photosynthesis in nature. Annu Rev Plant Physiol Plant Mol Biol 45:633–662CrossRefGoogle Scholar
  31. Marquardt R, Schubert H, Varela DA, Huovinen P, Henríquez L, Buschmann AH (2010) Light acclimation strategies of three commercially important red algal species. Aquaculture 299:140–148CrossRefGoogle Scholar
  32. McHugh DJ (2003) A guide to the seaweed industry, FAO Fisheries technical paper – T441. FAO, RomeGoogle Scholar
  33. Murano E, Toffanin R, Cecere E, Rizzo R, Knutsen SH (1997) Investigation of the carrageenans extracted from Solieria filiformis and Agardhiellia subulata from Mar Piccolo, Taranto. Mar Chem 58:319–325CrossRefGoogle Scholar
  34. Nishiyama Y, Allakhverdiev SI, Murata N (2006) A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. Biochim Biophys Acta 1757:742–749CrossRefPubMedGoogle Scholar
  35. Platt T, Gallegos CL, Harrison WG (1980) Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J Mar Res 38:687–701Google Scholar
  36. R Development Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL
  37. Roleda MY, Campana GL, Wiencke C, Hanelt D, Quartino ML, Wulff A (2009) Sensitivity of Antarctic Urospora penicilliformis (Ulotrichales, Chlorophyta) to ultraviolet radiation is life-stage dependent. J Phycol 45:600–609CrossRefPubMedGoogle Scholar
  38. Sagert S, Forster RM, Feuerpfeil P, Schubert H (1997) Daily course of photosynthesis and photoinhibition in Chondrus crispus (Rhodophyta) from different shore levels. Eur J Phycol 32:363–371CrossRefGoogle Scholar
  39. Salvucci ME, Crafts-Brandner SJ (2004) Relationship between the heat tolerance of photosynthesis and the thermal stability of rubisco activase in plants from contrasting thermal environments. Plant Physiol 134:1460–1470CrossRefPubMedPubMedCentralGoogle Scholar
  40. Stan Development Team (2015) Stan: A C++ Library for Probability and Sampling, Version 2.6. URL:
  41. Shinmura I, Tanaka T (2008) Useful algae in Kagoshima prefecture III: Rhodophyceae. Jap J Phycol 56:123–128 (in Japanese) Google Scholar
  42. Terada R, Vo TD, Nishihara GN, Matsumoto K, Kokubu S, Watanabe Y, Kawaguchi S (2016a) The effect of photosynthetically active radiation and temperature on the photosynthesis of two Vietnamese species of Sargassum, S. mcclurei and S. oligocystum, based on the field and laboratory measurements. Phycol Res 64:230–240CrossRefGoogle Scholar
  43. Terada R, Shikada S, Watanabe Y, Nakazaki Y, Matsumoto K, Kozono J, Saino N, Nishihara GN (2016b) Effect of PAR and temperature on the photosynthesis of the Japanese alga, Ecklonia radicosa (Laminariales), based on field and laboratory measurements. Phycologia 55:178–186CrossRefGoogle Scholar
  44. Terada R, Watanabe Y, Fujimoto M, Tatamidani I, Kokubu S, Nishihara GN (2016c) The effect of PAR and temperature on the photosynthetic performance of a freshwater red alga, Thorea gaudichaudii (Thoreales) from Kagoshima, Japan. J Appl Phycol 28:1255–1263CrossRefGoogle Scholar
  45. Vásquez-Elizondo RM, Enríquez S (2016) Coralline algal physiology is more adversely affected by elevated temperature than reduced pH. Sci Rep 6:19030. doi: 10.1038/srep19030 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Vo TD, Nishihara GN, Shimada S, Watanabe Y, Fujimoto M, Kawaguchi S, Terada R (2014) Taxonomic identity and the effect of temperature and irradiance on the photosynthesis of an indoor tank-cultured red alga Agardhiella subulata from Japan. Fish Sci 80:281–292CrossRefGoogle Scholar
  47. Vo TD, Nishihara GN, Kitamura Y, Shimada S, Kawaguchi S, Terada R (2015) The effect of irradiance and temperature on the photosynthesis of Hydropuntia edulis and Hydropuntia eucheumatoides (Gracilariaceae, Rhodophyta) from Vietnam. Phycologia 54:24–31CrossRefGoogle Scholar
  48. Watanabe Y, Nishihara GN, Tokunaga S, Terada R (2014a) The effect of irradiance and temperature responses and the phenology of a native alga, Undaria pinnatifida (Laminariales), at the southern limit of its natural distribution in Japan. J Appl Phycol 26:2405–2415CrossRefGoogle Scholar
  49. Watanabe Y, Nishihara GN, Tokunaga S, Terada R (2014b) The effect of irradiance and temperature on the photosynthesis of a cultivated red alga, Pyropia tenera (=Porphyra tenera), at the southern limit of distribution in Japan. Phycol Res 62:187–196CrossRefGoogle Scholar
  50. Watanabe Y, Yamada H, Takayuki M, Yoshio K, Nishihara GN, Terada R (2016) Photosynthetic responses of Pyropia yezoensis f. narawaensis ( Bangiales, Rhodophyta ) to a thermal and PAR gradient vary with the life-history stage. Phycologia 55:665–672CrossRefGoogle Scholar
  51. Webb WL, Newton M, Starr D (1974) Carbon dioxide exchange of Alnus rubra: a mathematical model. Oecologia 17:281–291CrossRefPubMedGoogle Scholar
  52. Yamada N, Terada R, Tanaka A, Horiguchi T (2013) Bispinodinium angelaceum gen. et sp. nov. (Dinophyceae), a new sand-dwelling dinoflagellate from the seafloor off Mageshima Island, Japan. J Phycol 49:555–569CrossRefPubMedGoogle Scholar
  53. Yoshida T (1989) Solieria pacifica (Yamada) Yoshida, comb. nov. (Soleriaceae, Rhodophyta) from Japan. Jap J Phycol 37:268–270Google Scholar
  54. Yoshida T (1998) Marine algae of Japan. Uchida Rokakuho Publishing, Tokyo, p 1222 (in Japanese) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Iris Ann Borlongan
    • 1
    Email author
  • Gregory N. Nishihara
    • 2
  • Satoshi Shimada
    • 3
  • Ryuta Terada
    • 1
  1. 1.United Graduate School of Agricultural SciencesKagoshima UniversityKagoshimaJapan
  2. 2.Institute for East China Sea Research, Organization for Marine Science and TechnologyNagasaki UniversityNagasakiJapan
  3. 3.Faculty of Core Research, Natural Science DivisionOchanomizu UniversityTokyoJapan

Personalised recommendations