Journal of Applied Phycology

, Volume 29, Issue 6, pp 3139–3150 | Cite as

Seasonal variation of carrageenans from Chondracanthus chamissoi with a review of variation in the carrageenan contents produced by Gigartinales

  • Karina VélizEmail author
  • Nancy Chandía
  • Marcelo Rivadeneira
  • Martin Thiel


Seasonal and geographic variations in carrageenan biosynthesis influence the commercial value and industrial applications of these phycocolloids due to the variation in yield and quality. This study examined the effects of season and seaweed origin on the carrageenans produced by the isomorphic phases of the red alga Chondracanthus chamissoi collected during winter and summer from two localities in the SE Pacific Ocean (northern-central Chile). Results were compared with those from other carrageenan-producing seaweeds, and a random forest analysis was carried out with the carrageenan contents reported for Gigartinales in order to determine the principal variables influencing carrageenan yields. The mean carrageenan contents of C. chamissoi ranged from 15.2 to 42.1% DW. Higher yields were observed in gametophytes than in tetrasporophytes, and in samples collected in summer than in winter. Seaweeds from the site close to a local upwelling center had more carrageenans than those from a more distant site. The chemical composition of the carrageenans of C. chamissoi varied only between phases. Carrageenan contents reported for Gigartinales vary from 5.4 to 75.5% DW. The random forest model showed a large accuracy explaining variation in carrageenan yields (pseudo-r 2 = 0.63), where genus was ranked as the most important factor, followed by biogeographical origin, solar radiation, nitrate concentrations, and temperature. Considering that the understanding of the genetic basis of carrageenan biosynthesis is limited, our analysis highlights the need for experimental studies examining the effects of taxon and geographical origin in these polysaccharides as a strategy for improving both carrageenan quality and quantity through strain selection.


Carrageenans Gigartinales Chondracanthus chamissoi Chile 



Financial support for this study was provided by Fondecyt 1131082 to M.T, FIC-R BIP 30137720-0 to N.P.C., and Ph.D Grant CONICYT 21130402 to K.V. We would like to thank to the Centro de Investigación y Desarrollo Tecnológico en Algas (CIDTA-UCN) and the Laboratory of Marine Botany at the Universidad Católica del Norte for providing laboratory facilities. We are also grateful to Fadia Tala and an anonymous reviewer for the comments and review of the manuscript.

Supplementary material

10811_2017_1203_MOESM1_ESM.docx (30 kb)
ESM 1 (DOCX 29 kb)


  1. Amimi A, Mouradi A, Bennasser L, Givernaud T (2007) Seasonal variation in thalli and carrageenan composition of Gigartina pistillata (Gmelin) Stackhouse (Rhodophyta, Gigartinales) harvested along the Atlanctic coast of Morocco. Phycol Res 55:143–149CrossRefGoogle Scholar
  2. Arias F, Mansilla A, Matsuhiro B, Pavez J, Torres R, Yáñez-Sánchez M (2016) Carrageenans from nuclear phases of subantartic Mazzaella laminarioides (Gigartinales, Rhodophyta) and graft copolymerizacion of alkali-modified carrageenan with acrylamide. J Appl Phycol 28:1275–1286CrossRefGoogle Scholar
  3. Aziza M, Givernaud T, Chikhaoui-khay M, Bennasser L (2008) Seasonal variation of the growth, chemical composition and carrageenan extracted from Hypnea musciformis (Wulfen) Lamouroux harvested along the Atlantic coast of Morocco. Sci Res Essays 2:509–514Google Scholar
  4. Bixler HJ, Porse H (2011) A decade of change in the seaweed hydrocolloids industry. J Appl Phycol 23:321–335CrossRefGoogle Scholar
  5. Bouarab K, Potin P, Correa J, Kloareg B (1999) Sulfated oligosaccharides mediate the interaction between a marine red alga and its green algal pathogenic endophyte. Plant Cell 11:1635–1650CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  7. Breden PC, Bird KT (1994) Effects of environmental factors on carrageenan from Gymnogongrus griffithsiae (Gigartinales, Rhodophyta). J Appl Phycol 6:371–380CrossRefGoogle Scholar
  8. Breiman L (2001) Random forest. Mach Learn 45:5–32CrossRefGoogle Scholar
  9. Bulboa C, Macchiavello J, Oliveira E, Véliz K (2008) Growth rate differences between four Chilean populations of edible seaweed Chondracanthus chamissoi (Rhodophyta, Gigartinales). Aquac Res 39:1550–1555CrossRefGoogle Scholar
  10. Buschmann AH, Kuschel FA, Vergara PA, Schulz J (1992) Intertidal Gracilaria farming in southern Chile: differences of the algal provenience. Aquatic Bot 42:327–337CrossRefGoogle Scholar
  11. Buschmann AH, Correa JA, Westermeier R, Paredes MA, Aedo D, Potin P, Aroca G, Beltrán J, Hernández-González MC (2001) Cultivation of Gigartina skottsbergii (Gigartinales, Rhodophyta): recent advances and challenges for the future. J Appl Phycol 13:255–266CrossRefGoogle Scholar
  12. Campo VL, Kawano DF, da Silva DB, Carvalho I (2009) Carrageenans: biological properties, chemical modifications and structural analysis—a review. Carbohyd Polym 77:167–180CrossRefGoogle Scholar
  13. Carrington E, Grace SP, Chopin T (2001) Life history phases and the biomechanical properties of the red alga Chondrus crispus (Rhodophyta). J Phycol 37:699–704CrossRefGoogle Scholar
  14. Chandía NP, Matsuhiro B, Vásquez AE (2001) Alginic acids in Lessonia trabeculata: characterization by formic acid hydrolysis and FT-IR spectroscopy. Carbohyd Polym 46:81–87CrossRefGoogle Scholar
  15. Chopin T, Hanisak MD, Koehn FE, Mollion J, Moreau S (1990) Studies on carrageenans and effects of seawater phosphorus concentration on carrageenan content and growth of Agardhiella subulata (C. Agardh) Kraft and Wynne (Rhodophyceae, Solieriaceae). J Appl Phycol 2:3–16CrossRefGoogle Scholar
  16. Chopin T, Gallant T, Davison I (1995) Phosphorus and nitrogen nutrition in Chondrus crispus (Rhodophyta): effects on total phosphorus and nitrogen content, carrageenan production, and photosynthetic pigments and metabolism. J Phycol 31:283–293CrossRefGoogle Scholar
  17. Chopin T, Kerin BF, Mazerolle R (1999) Phycocolloid chemistry as a taxonomic indicator of phylogeny in the Gigartinales, Rhodophyceae: a review and current developments using Fourier transform infrared diffuse reflectance spectroscopy. Phycol Res 47:167–188CrossRefGoogle Scholar
  18. Chopin T, Wagey BT (1999) Factorial study of the effects of phosphorus and nitrogen enrichments on nutrients and carrageenan content in Chondrus crispus (Rhodophyceae) and on residual nutrient concentration in seawater. Bot Mar 42:23–21CrossRefGoogle Scholar
  19. Craigie JS (1990) Cell walls. In: Cole KM, Sheath RG (eds) Biology of the red algae. Cambridge University Press, Cambridge, pp 221–257Google Scholar
  20. Dawes CJ, Lawrence JM, Cheney DP, Mathieson AC (1974) Ecological studies of Floridian Eucheuma (Rhodophyta, Gigartinales). III. Seasonal variation of carrageenan, total carbohydrate, protein and lipid. Bull Mar Sci 24:235–273Google Scholar
  21. Dodgson K, Price R (1962) A note on the determination of the ester sulphate content of sulphated polysaccharides. Biochem J 84:106–110CrossRefPubMedPubMedCentralGoogle Scholar
  22. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356CrossRefGoogle Scholar
  23. Eggert A (2012) Seaweed response to temperature. In: Wiencke C, Bischof K (eds) Seaweed biology novel insights into ecophysiology, ecology and utilization. Springer, Berlin, pp 47–66Google Scholar
  24. Falshaw R, Bixler HJ, Johndro K (2001) Structure and performance of commercial kappa-2 carrageenan extracts. I. Structure analysis. Food Hydrocolloid 15:441–452CrossRefGoogle Scholar
  25. Fournet I, Zinoun M, Deslandes E, Diouris M, Floc'h JY (1999) Floridean starch and carrageenan contents as responses of the red alga Solieria chordalis to culture conditions. Eur J Phycol 34:125–130CrossRefGoogle Scholar
  26. Freile-Pelegrín Y, Robledo D (2006) Carrageenan of Eucheuma isiforme (Solieriaceae, Rhodophyta) from Yucatán, México. II. Seasonal variations in carrageenan and biochemical characteristics. Bot Mar 49:72–78Google Scholar
  27. Góes HG, Reis RP (2012) Temporal variation of the growth, carrageenan yield and quality of Kappaphycus alvarezii (Rhodophyta, Gigartinales) cultivated at Sepetiba bay, southeastern Brazilian coast. J Appl Phycol 24:173–180CrossRefGoogle Scholar
  28. Gónzalez J, Meneses I, Vázquez JA (1997) Field studies in Chondracanthus chamissoi (C. Agardh) Kützing: seasonal and spatial variation in life-cycle phases. Biología Pesquera (Chile) 26:3–12Google Scholar
  29. Goulard F, Diouris M, Quere G, Deslandes E, Floc'h JY (2001) Salinity effects on NDP-sugar, floridoside, starch and carrageenan yield, and UDP-glucose-pyrophosphorylase and epimerase activities of cultivated Solieria chordalis. J Plant Physiol 158:1387–1394CrossRefGoogle Scholar
  30. Hayashi L, Paula EJ, Chow F (2007) Growth rate and carrageenan analyses in four strains of Kappaphycus alvarezii (Rhodophyta, Gigartinales) farmed in the subtropical waters of São Paulo State, Brazil. J Appl Phycol 19:393–399CrossRefGoogle Scholar
  31. Hayashi L, Santos AA, Faria GSM, Nunes BG, Souza MS, Fonseca ALD, Barreto PLM, Oliveira EC, Bouzon ZL (2011) Kappaphycus alvarezii (Rhodophyta, Areschougiaceae) cultivated in subtropical waters in southern Brazil. J Appl Phycol 23:337–343CrossRefGoogle Scholar
  32. Hayashi L, Bulboa C, Kradolfer P, Soriano G, Robledo D (2013) Cultivation of red seaweeds: a Latin American perspective. J Appl Phycol 26:719–727CrossRefGoogle Scholar
  33. Hilliou L, Larotonda FDS, Abreu P, Abreu MH, Sereno AM, Goncalves (2012) The impact of seaweed life phase and postharvest storage duration on the chemical and rheological properties of hybrid carrageenans isolated from Portuguese Mastocarpus stellatus. Carbohyd Polym 87:2655–2663Google Scholar
  34. Hoffmann A, Santelices B (1997) Flora Marina de Chile Central. Ediciones Universidad Católica de Chile, Santiago, Chile. 434 ppGoogle Scholar
  35. Hung LD, Hori K, Nang HQ, Kha T, Hoa LT (2009) Seasonal changes in growth rate, carrageenan yield and lectin content in the red alga Kappaphycus alvarezii cultivated in Camranh Bay, Vietnam. J Appl Phycol 21:265–272CrossRefGoogle Scholar
  36. Hurtado MA, Manzano-Sarabia M, Hernández-Garibay E, Pacheco-Ruíz I, Zertuche-González JA (2011) Latitudinal variations of the yield and quality of agar from Gelidium robustum (Gelidiales, Rhodophyta) from the main commercial harvest beds along the western coast of the Baja California Peninsula, Mexico. J Appl Phycol 23:727–734CrossRefGoogle Scholar
  37. Jiao G, Yu G, Zhang J, Ewart HS (2011) Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Mar Drugs 9:196–223CrossRefPubMedPubMedCentralGoogle Scholar
  38. Jofré D, Rivadeneira MM, Tala F, Thiel M (2014) Environmental tolerance of the two invasive species Ciona intestinalis and Codium fragile: their invasion potential along a temperate coast. Biol Invasions 16:2507–2527CrossRefGoogle Scholar
  39. Jouanneau D, Boulenguer P, Mazoyer J, Hebert W (2011) Hybridity of carrageenans water- and alkali-extracted from Chondracanthus chamissoi, Mazzaella laminarioides, Sarcothalia crispata, and Sarcothalia radula. J Appl Phycol 23:105–114CrossRefGoogle Scholar
  40. Kloareg B, Quatrano RS (1988) Structure of the cell wall of marine algae and ecophysiological functions of the matrix polysaccharides. Oceanogr Mar Biol 26:259–315Google Scholar
  41. Lahaye M (2001) Developments on gelling algal galactans, their structure and physico-chemistry. J Appl Phycol 13:173–184CrossRefGoogle Scholar
  42. Li R, Li JJ, Wu CY (1990) Effect of ammonium on growth and carrageenan content in Kappaphycus alvarezii (Gigartinales, Rhodophyta). Hydrobiologia 204/205:499–503Google Scholar
  43. Li L, Ni R, Shao Y, Mao S (2014) Carrageenan and its applications in drug delivery. Carbohyd Polym 103:1–11CrossRefGoogle Scholar
  44. Liaw A, Wiener M (2002) Classification and regression by random Forest. R News 2:18–22Google Scholar
  45. López-Acuña LM, Pacheco-Ruiz I, Hernández-Garibay E, Zertuche JA (2002) Characterization of the carrageenan of Chondracanthus pectinatus (Rhodophyta, Gigartinales). Cienc Mar 28:311–318CrossRefGoogle Scholar
  46. Macler BA (1986) Regulation of carbon flow by nitrogen and light in the red alga Gelidium coulteri. Plant Physiol 82:136–141CrossRefPubMedPubMedCentralGoogle Scholar
  47. Matsuhiro B, Conte AF, Damonte EB, Kolender AA, Matulewicz MC, Mejías EG, Pujol CA, Zúñiga EA (2005) Structural analysis and antiviral activity of a sulfated galactan from the red seaweed Schizymenia binderi (Gigartinale, Rhodophyta). Carbohydr Res 340:2392–2402CrossRefPubMedGoogle Scholar
  48. Matulewicz MC, Ciancia M, Noseda MD, Cerezo AS (1989) Carrageenan system from tetrasporic and cystocarpic stages of Gigartina skottsbergii. Phytochemistry 28:2937–2941CrossRefGoogle Scholar
  49. McCandless EL, West JA, Guiry MD (1983) Carrageenan patterns in the Gigartinaceae. Biochem Syst Biol 11:175–182CrossRefGoogle Scholar
  50. Moraga J, Olivares J (1993) Variabilidad térmica de la bahía la Herradura de Guayacán, Coquimbo, Chile. Estudios Oceanologicos 12:29–36Google Scholar
  51. Moraga J, Valdebenito E, Rutllant J (2001) Condiciones oceanográficas durante la fase de relajación de un evento de surgencia invernal frente a Punta Lengua de Vaca, Coquimbo. Invest Mar Valparaíso 29:59–71Google Scholar
  52. Moraga-Opazo J, Valle-Levinson A, Ramos M, Pizarro-Koch M (2011) Upwelling-triggered near geostrophic recirculation in an equatoward facing embayment. Cont Shelf Res 31:1991–1999CrossRefGoogle Scholar
  53. Pereira L, Mesquita JF (2004) Population studies and carrageenan properties of Chondracanthus teedei var. lusitanicus (Gigartinaceae, Rhodophyta). J Appl Phycol 16:369–383CrossRefGoogle Scholar
  54. Pereira L, Critchley AT, Amado AM, Ribeiro-Claro P (2009) A comparative analysis of phycocolloids produced by underutilized versus industrially utilized carrageenophytes (Gigartinales, Rhodophyta). J Appl Phycol 21:599–605CrossRefGoogle Scholar
  55. Pereira L, van de Velde F (2011) Portuguese carrageenophytes: carrageenan composition and geographic distribution of eight species (Gigartinales, Rhodophyta). Carbohyd Polym 84:614–623CrossRefGoogle Scholar
  56. Pereira L (2013) Population studies and carrageenan properties in eight Gigartinales (Rhodophyta) from western coast of Portugal. Sci World J. doi: 10.1155/2013/939830
  57. Periyasamy C, Anantharaman P, Balasubramanian T, Subba Rao PV (2014) Seasonal variation in growth and carrageenan yield in cultivated Kappaphycus alvarezii (Doty) Doty on the coastal waters of Ramanathapuram, Tamilnadu, India. J Appl Phycol 26:803–810CrossRefGoogle Scholar
  58. Periyasamy C, Subba Rao PV (2017) Growth rate and carrageenan yield of cultivated Kappaphycus alvarezii (Doty) Doty in the coastal waters of Bay of Bengal at Chepala Timmapuram, Andhra Pradesh. East coast of India J Appl Phycol. doi: 10.1007/s10811-017-1099-1
  59. Piriz ML, Cerezo AS (1991) Seasonal variation of carrageenan in tetrasporic, cystocarpic and ‘sterile’ stages of Gigartina skottsbergii S. et G. (Rhodophyta, Gigartinales). Hydrobiologia 225:65–69CrossRefGoogle Scholar
  60. Porse H, Rudolph B (2017) The seaweed hydrocolloid industry: 2016 updates, requirements, and outlook. J Appl Phycol. doi: 10.1007/s10811-017-1144-0
  61. Prajapati VD, Maheriya PM, Jani GK, Solanki HK (2014) Carrageenan: a natural seaweed polysaccharide and its applications. Carbohyd Polym 105:97–112CrossRefGoogle Scholar
  62. Development Core Team R (2016) R: a language and environment for statistical computing. R Foundation for statistical computing, Vienna, AustriaGoogle Scholar
  63. Reis RP, Yoneshigue-Valentin Y, dos Santos CP (2008) Spatial and temporal variation of Hypnea musciformis carrageenan (Rhodophyta, Gigartinales) from natural beds in Rio de Janeiro State, Brazil. J Appl Phycol 20:1–8CrossRefGoogle Scholar
  64. Spalding MD, Fox HE, Allen GR, Davison N, Ferdaña ZA, Finlayson M, Halpern BS, Jorge MA, Lombana A, Lourie SA, Martin KD, McManus E, Molnar J, Recchia CA, Robertson J (2007) Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Bio Science 57:573–583Google Scholar
  65. Tala F, Velásquez M, Mansilla A, Macaya EC, Thiel M (2016) Latitudinal and seasonal effects on short-term acclimation of floating kelp species from the South-East Pacific. J Exp Mar Biol Ecol 483:31–41CrossRefGoogle Scholar
  66. Tapia FJ, Largier JL, Castillo M, Wieters EA, Navarrete SA (2014) Latitudinal discontinuity in thermal conditions along the nearshore of central-northern Chile. PLoS One 9(10):e1108041CrossRefGoogle Scholar
  67. Tasende MG, Cid M, Fraga MI (2012) Spatial and temporal variations of Chondrus crispus (Gigartinaceae, Rhodophyta) carrageenan content in natural populations from Galicia (NW Spain). J Appl Phycol 24:941–951CrossRefGoogle Scholar
  68. Tasende MG, Cid M, Fraga MI (2013) Qualitative and quantitative analysis of carrageenan content in gametophytes of Mastocarpus stellatus (Stackhouse) Guiry along Galician coast (NW Spain). J Appl Phycol 25:587–596CrossRefGoogle Scholar
  69. Tyberghein L, Verbruggen H, Pauly K, Troupin C, Mineur F, De Clerck O (2012) Bio-ORACLE: a global environmental dataset for marine species distribution modeling. Glob Ecol Biogeogr 21:272–281CrossRefGoogle Scholar
  70. Valdivia N, González AE, Manzur T, Broitman BR (2013) Mesoscale variation of mechanisms contributing to stability in rocky shore communities. PLoS One 8(1):e54159CrossRefPubMedPubMedCentralGoogle Scholar
  71. Valdivia N, Aguilera MA, Navarrete SA, Broitman BR (2015) Disentangling the effects of propagule supply and environmental filtering on the spatial structure of a rocky shore metacommunity. Mar Ecol Prog Ser 538:67–79CrossRefGoogle Scholar
  72. Van Alstyne KL, McCarthy JJ, Hustead CL, Duggins DO (1999) Geographic variation in polyphenolic levels of northeastern Pacific kelps and rockweeds. Mar Biol 133:371–379CrossRefGoogle Scholar
  73. van de Velde F (2008) Structure and function of hybrid carrageenans. Food Hydrocoll 22:727–734CrossRefGoogle Scholar
  74. Vásquez JA, Vega JMA (2001) Chondracanthus chamissoi (Rhodophyta, Gigartinales) in northern Chile: ecological aspects for management of wild populations. J Appl Phycol 13:267–277CrossRefGoogle Scholar
  75. Venegas M, Matsuhiro B, Edding ME (1993) Alginate composition of Lessonia trabeculata (Phaeophyta: Laminariales) growing in exposed and sheltered habitats. Bot Mar 36:47–51CrossRefGoogle Scholar
  76. Verbruggen H, Marcelino VR, Costa JF (2014) Evolutionary dynamics of algal traits and diversity. Perspect Phycol 1:53–60CrossRefGoogle Scholar
  77. Villanueva RD, Mendoza WG, Rodrigueza MR, Romero JB, Montano MNE (2004) Structure and functional performance of Gigartinacean kappa-iota hybrid carrageenan and Solieriacean kappa-iota carrageenan blends. Food Hydrocoll 18:283–292Google Scholar
  78. Wakibia JG, Bolton JJ, Keats DW, Raitt LM (2006) Seasonal changes in carrageenan yield and gel properties in three commercial eucheumoids grown in southern Kenya. Bot Mar 49:208–215CrossRefGoogle Scholar
  79. Wang P, Zhao X, Lv Y, Li M, Liu X, Li G, Yu G (2012) Structural and compositional characteristics of hybrid carrageenans from red algae Chondracanthus chamissoi. Carbohyd Polym 89:914–919CrossRefGoogle Scholar
  80. Wiens JJ, Graham CH (2005) Niche conservatism: integrating evolution, ecology, and conservation biology. Annu Rev Ecol Evol Syst 36:519–539CrossRefGoogle Scholar
  81. Yaphe W, Arsenault GP (1965) Improved resorcinol reagent for the determination of fructose and 3,6-anhydrogalactose in polysaccharides. Anal Biochem 13:143–148CrossRefGoogle Scholar
  82. Zinoun M, Cosson J (1996) Seasonal variation in growth and carrageenan content of Calliblepharis jubata (Rhodophyceae, Gigartinales) from the Normandy Coast, France. J Appl Phycol 8:29–34CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Doctorado en Biología y Ecología AplicadaUniversidad Católica del NorteCoquimboChile
  2. 2.Laboratorio de Moléculas BioactivasUniversidad Católica del NorteCoquimboChile
  3. 3.Departamento de Biología Marina, Facultad de Ciencias del MarUniversidad Católica del NorteCoquimboChile
  4. 4.Centro de Estudios Avanzados en Zonas Áridas (CEAZA)CoquimboChile
  5. 5.Millennium Nucleus Ecology and Sustainable Management of Oceanic Island (ESMOI)CoquimboChile

Personalised recommendations