Journal of Applied Phycology

, Volume 29, Issue 4, pp 1791–1799 | Cite as

The effect of environmental factors on fatty acid composition of Chromera velia (Chromeridae)

  • Martin LukešEmail author
  • Mario Giordano
  • Ondřej Prášil


The effect of light intensity, light spectral quality, temperature and salt concentration on the fatty acid composition of Chromera velia was studied. Chromera velia is a unicellular, marine, photosynthetic, eukaryotic alga and a close relative of the apicomplexan parasites. Chromera velia was able to grow at light intensities between 20 and 450 μmol photons m−2 s−1, in the temperature range 17–32 °C and at salinities between 0.2 and 1 M NaCl. The cells responded to variations in the growth regime by modifying fatty acid composition: the ratio of fully saturated palmitic acid (C16:0) and five times unsaturated eicosapentaenoic acid (C20:5n–3) was especially prone to variation. Intermediate fatty acids, namely stearic, linoleic and dihomo-γ-linolenic acids, changed minimally and were probably not involved in the response to the growth regimes. The highest proportion of eicosapentaenoic acid was observed when the cultures were maintained at 32 °C, at an irradiance of 80 μmol photons m−2 s−1, provided by an incandescent light source, under a 12-/12-h day/night photoperiod.


Chromera velia Chromeridae Fatty acids Eicosapentaenoic acid Light Temperature Salinity 



Financial support was provided by the project 14-15728S of the Grant Agency of the Czech Republic and by the project “Algatech plus” LO1416 of the Ministry of Education of the Czech Republic. We wish to thank Anna Yeates for correcting the English in this manuscript.

Supplementary material

10811_2017_1114_MOESM1_ESM.pdf (123 kb)
Fig. S1 (PDF 123 kb)
10811_2017_1114_MOESM2_ESM.pdf (69 kb)
Fig. S2 (PDF 68 kb)
10811_2017_1114_MOESM3_ESM.pdf (64 kb)
ESM. 3 (PDF 64 kb)


  1. Atta M, Idris A, Bukhari A, Wahidin S (2013) Intensity of blue LED light: a potential stimulus for biomass and lipid content in fresh water microalgae Chlorella vulgaris. Bioresour Technol 148:373–378CrossRefPubMedGoogle Scholar
  2. Ben-Amotz A, Tornabene TG, Thomas WH (1985) Chemical profile of selected species of microalgae with emphasis on lipids. J Phycol 21:72–81CrossRefGoogle Scholar
  3. Bisson MA, Kirst GO (1995) Osmotic acclimation and turgor pressure regulation in algae. Naturwissenschaften 82:461–471CrossRefGoogle Scholar
  4. Botte CY, Yamaryo-Botte Y, Janouskovec J, Rupasinghe T, Keeling PJ, Crellin P, Coppel RL, Maréchal E, McConville MJ, McFadden GI (2011) Identification of plant-like galactolipids in Chromera velia, a photosynthetic relative of malaria parasites. J Biol Chem 286:29893–29903CrossRefPubMedPubMedCentralGoogle Scholar
  5. Cohen Z (1994) Production potential of eicosapentaenoic acid by Monodus subterraneus. J Am Oil Chem Soc 71:941–945CrossRefGoogle Scholar
  6. Cohen Z, Vonshak A, Richmond A (1988) Effect of environmental conditions on fatty acid composition of the red alga Porphyridium cruentum: correlation to growth rate. J Phycol 24:328–332Google Scholar
  7. Coolbear KP, Berde CB, Keough KMW (1983) Gel to liquidcrystalline phase transitions of aqueous dispersions of polyunsaturated mixed-acid phosphatidylcholines. Biochemistry 22:1466–1473CrossRefPubMedGoogle Scholar
  8. Das P, Lei W, Aziz SS, Obbard JP (2011) Enhanced algae growth in both phototrophic and mixotrophic culture under blue light. Bioresour Technol 102:3883–3887Google Scholar
  9. Erdmann N, Hagemann M (2001) Salt acclimation of algae and cyanobacteria: a comparison. In: Rai LC, Gaur JP (eds) Algal adaptation to environmental stresses. Springer, Heidelberg, pp 323–362CrossRefGoogle Scholar
  10. Fabregas J, Maseda A, Dominquez A, Otero A (2004) The cell composition of Nannochloropsis sp. changes under different irradiances in semicontinuous culture. World J Microbiol Biotechnol 20:31–35CrossRefGoogle Scholar
  11. Fernandes MX, Castanho MARB, de la Torre JG (2002) Brownian dynamics simulation of the unsaturated lipidic molecules oleic and docosahexaenoic acid confined in a cellular membrane. Biochim Biophys Acta Biomembr 1565:29–35CrossRefGoogle Scholar
  12. Guschina IA, Harwood JL (2006) Lipids and lipid metabolism in eukaryotic algae. Prog Lipid Res 45(2):160–186Google Scholar
  13. Hu H, Gao K (2006) Response of growth and fatty acid compositions of Nannochloropsis sp. to environmental factors under elevated CO2 concentration. Biotechnol Lett 28:987–992CrossRefPubMedGoogle Scholar
  14. Hultberg M, Larsson Jönsson H, Bergstrand KJ, Carlsson AS (2014) Impact of light quality on biomass production and fatty acid content in the microalga Chlorella vulgaris. Bioresour Technol 159:465–467CrossRefPubMedGoogle Scholar
  15. Hunte C (2005) Specific protein-lipid interactions in membrane proteins. Biochem Soc Trans 33:938–942CrossRefPubMedGoogle Scholar
  16. Janouskovec J, Horak A, Obornik M, Lukes J, Keeling PJ (2010) A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. Proc Natl Acad Sci U S A 107:10949–10954CrossRefPubMedPubMedCentralGoogle Scholar
  17. Janouskovec J, Horak A, Barott KL, Rohwer FL, Keeling PJ (2012) Global analysis of plastid diversity reveals apicomplexan-related lineages in coral reefs. Curr Biol 22:R518–R519CrossRefPubMedGoogle Scholar
  18. Kainz M, Lucotte M, Parrish CC (2002) Methyl mercury in zooplankton—the role of size, habitat, and food quality. Can J Fish Aquat Sci 59:1606–1615CrossRefGoogle Scholar
  19. Khotimchenko SV, Yakovleva IM (2005) Lipid composition of the red alga Tichocarpus crinitus exposed to different levels of proton irradiance. Phytochemistry 66:73–79CrossRefPubMedGoogle Scholar
  20. Kirst GO (1989) Salinity tolerance of eukaryotic marine algae. Annu Rev Plant Physiol 41:21–53CrossRefGoogle Scholar
  21. Klyachko-Gurvich GL, Tsoglin LN, Doucha J, Kopetskii J, Shebalina IB, Semenenko VE (1999) Desaturation of fatty acids as an adaptive response to shifts in light intensity. Physiol Plant 107:240–249CrossRefGoogle Scholar
  22. Kotabová E, Kaňa R, Jarešová J, Prášil O (2011) Non-photochemical fluorescence quenching in Chromera velia is enabled by fast violaxanthin de-epoxidation. FEBS Lett 585:1941–1945CrossRefPubMedGoogle Scholar
  23. Kotabová E, Jarešová J, Kaňa R, Sobotka R, Bína D, Prášil O (2014) Novel type of red-shifted chlorophyll a antenna complex from Chromera velia. I. Physiological relevance and functional connection to photosystems. Biochim Biophys Acta 1837:734–743Google Scholar
  24. Kvíderová J, Lukavský J (2001) A new unit for crossed gradients of temperature and light.  In: Elster J, Seckbach J, Vincent WF, Lhotský O (eds) Algae and extreme environments. Cramer, Stuttgart, pp 541–550 Google Scholar
  25. Leblond JD, Dodson J, Khadka M, Holder S, Seipelt RL (2012) Sterol composition and biosynthetic genes of the recently discovered photosynthetic alveolate, Chromera velia (Chromerida), a close relative of apicomplexans. J Eukaryot Microbiol 59:191–197CrossRefPubMedGoogle Scholar
  26. Lee Y-K, Tan H-M, Low C-S (1989) Effect of salinity of medium on cellular fatty acid composition of marine alga Porphyridium cruentum (Rhodophyceae). J Appl Phycol 1:19–23CrossRefGoogle Scholar
  27. Moore RB, Obornik M, Janouskovec J, Chrudimsky T, Vancova M, Green DH, Wright SW, Davies NW, Bolch CJS, Heimann K, Slapeta J, Hoegh-Guldberg O, Logsdon JM, Carter DA (2008) A photosynthetic alveolate closely related to apicomplexan parasites. Nature 451:959–963CrossRefPubMedGoogle Scholar
  28. Morgan-Kiss M, Priscu JC, Pocock T, Gudynaite-Savitch L, Huner PA (2006) Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiol Mol Biol Rev 70:222–252CrossRefPubMedPubMedCentralGoogle Scholar
  29. Murata N, Wada H (1995) Acyl-lipid desaturases and their importance in the tolerance and acclimatization to cold of cyanobacteria. Biochem J 308:1–8CrossRefPubMedPubMedCentralGoogle Scholar
  30. Nishida I, Murata N (1996) Chilling sensitivity in plants and cyanobacteria: the crucial contribution of membrane lipids. Annu Rev Plant Physiol Plant Mol Biol 47:541–568CrossRefPubMedGoogle Scholar
  31. Oborník M, Vancová M, Lai DH, Janouškovec J, Keeling PJ, Lukeš J (2011) Morphology and ultrastructure of multiple life cycle stages of the photosynthetic relative of apicomplexa, Chromera velia. Protist 162:115–130CrossRefPubMedGoogle Scholar
  32. Pal D, Khozin-Goldberg I, Cohen Z, Boussiba S (2011) The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp. Appl Microbiol Biotechnol 90:1429–1441CrossRefPubMedGoogle Scholar
  33. Palsdottir H, Hunte C (2004) Lipids in membrane protein structures. Biochim Biophys Acta 1666(1–2):2–18CrossRefPubMedGoogle Scholar
  34. Quigg A, Kotabová E, Jarešová J, Kaňa R, Šetlík J, Šedivá B, Komárek O, Prášil O (2012) Photosynthesis in Chromera velia represents a simple system with high efficiency. PLoS One 7(10):e47036CrossRefPubMedPubMedCentralGoogle Scholar
  35. Rao AR, Dayananda C, Sarada R, Shamala TR, Ravishankar GA (2007) Effect of salinity on growth of green alga Botryococcus braunii and its constituents. Bioresour Technol 98:560–564CrossRefPubMedGoogle Scholar
  36. Renaud SM, Parry DL (1994) Microalgae for use in tropical aquaculture II: effect of salinity on growth, gross chemical composition and fatty acid composition of three species of marine microalgae. J Appl Phycol 6:347–356CrossRefGoogle Scholar
  37. Russel NJ (1989) Functions of lipids: structural roles and membrane functions. In: Ratledge C, Wilkinson SG (eds) Microbial lipids, vol 2. Academic, London, pp 279–365Google Scholar
  38. Seto A, Kumasaka M, Hosaka M, Kojima E, Kashiwakura M, Kato T (1992) Production of eicosapentaenoic acid by a marine microalgae and its commercial utilization for aquaculture. In: Kyle DJ, Ratledge C (eds) Industrial applications of single cell oils. Am. Oil Chem. Soc, Champaign, pp 219–234Google Scholar
  39. Skoczowski A, Filek M, Dubert F (1994) The long-term effect of cold on the metabolism of winter wheat seedlings. II. Composition of fatty acids of phospholipids. J Therm Biol 19:171–176Google Scholar
  40. Sukenik A (1991) Ecophysiological considerations in the optimization of eicosapentaenoic acid production by Nannochloropsis sp. (Eustigmatophyceae). Bioresour Technol 35:263–269CrossRefGoogle Scholar
  41. Sukenik A, Carmeli Y (1989) Regulation of fatty acid composition by irradiance level in the eustigmatophyte Nannochloropsis sp. J Phycol 25:686–692CrossRefGoogle Scholar
  42. Takagi M, Karseno, Yoshida T (2006) Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J Biosci Bioeng 101:223–226CrossRefPubMedGoogle Scholar
  43. Thompson PA, Guo M, Harrison PJ, Whyte JNC (1992) Effects of variation in temperature: II. On the fatty acid composition of eight species of marine phytoplankton. J Phycol 28:488–497CrossRefGoogle Scholar
  44. Usui K, Hiraki T, Kawamoto J, Kurihara T, Nogi Y, Kato C, Abe F (2012) Eicosapentaenoic acid plays a role in stabilizing dynamic membrane structure in the deep-sea piezophile Shewanella violacea: a study employing high-pressure time-resolved fluorescence anisotropy measurement. Biochim Biophys Acta Biomembr 1818:574–583CrossRefGoogle Scholar
  45. Wang CY, Fu CC, Liu YC (2007) Effects of using light-emitting diodes on the cultivation of Spirulina platensis. Biochem Eng J 37:21–25CrossRefGoogle Scholar
  46. Xiong L, Zhu JK (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ 25:131–139CrossRefPubMedGoogle Scholar
  47. Xu XQ, Berdall J (1997) Effect of salinity on fatty acid composition of green microalgae from an Antarctic hypersaline lake. Phytochemistry 45:655–658CrossRefGoogle Scholar
  48. Yongmanitchai W, Ward OP (1991) Growth of and omega-3 fatty acid production by Phaeodactylum tricornutum under different culture conditions. Appl Environ Microbiol 57:419–425PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Institute of Microbiology ASCR, Centrum Algatech, Laboratory of PhotosynthesisOpatovický mlýnTřeboňCzech Republic
  2. 2.Faculty of SciencesUniversity of South BohemiaČeské BudějoviceCzech Republic
  3. 3.Laboratory of Algal and Plant Physiology, Dipartimento di Scienze della Vita e dell’AmbienteUniversità Politecnica delle MarcheAnconaItaly
  4. 4.National Research CouncilIstituto di Biologia Agro-Ambeintale e Forestale; Consiglio Nazionale delle Ricerche (IBAF-CNR)TerniItaly

Personalised recommendations