OvMeter: an automated 3D-integrated opto-electronic system for Ostreopsis cf. ovata bloom monitoring

Abstract

Over the last decade, toxic events along the Mediterranean coast associated with exceptional harmful blooms of the dinoflagellate Ostreopsis cf. ovata have increased in frequency and distribution, causing not only the death of marine organisms and human health problems, but also economic loss on the tourism and aquaculture industries. In order to reduce the burden of routine algal counting, an innovative automated, low-cost, opto-electronic system called OvMeter was developed. It is able to speed up the monitoring process and therefore it enables early warning of incipient harmful algal blooms. An ad-hoc software tool provides automated cell recognition, counting and real-time calculation of the final algal concentration. The core of dinoflagellate recognition relies on a localization step which takes advantage of the synergistic exploitation of 2D bright-field and quantitative phase microscopy images, and a classification phase performed by a machine learning algorithm based on Boosted Trees approach. The architectural design of the OvMeter device is presented here, together with a performance evaluation on sea samples.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Accoroni S, Romagnoli T, Pichierri S, Colombo F, Totti C (2012) Morphometric analysis of Ostreopsis cf. ovata cells in relation to environmental conditions and bloom phases. Harmful Algae 19:15–22

    Article  Google Scholar 

  2. Barty A, Nugent KA, Paganin D, Roberts A (1998) Quantitative optical phase microscopy. Opt Lett 23:817–819

    CAS  Article  PubMed  Google Scholar 

  3. Bernal AJ, Ferrando SE, Bernal LJ (2008) Cell recognition using wavelet templates. Proc. Canadian Conference on Electrical and Computer Engineering 1219–1222

  4. Besada EG, Loeblich LA, Loeblich AR (1982) Observations on tropical, benthic dinoflagellates from ciguatera-endemic areas: Coolia, Gambierdiscus, and Ostreopsis. Bull Mar Sci 32:723–735

    Google Scholar 

  5. Bishop C (2007) Pattern recognition and machine learning. Springer, Heidelberg

    Google Scholar 

  6. Boykov YY, Kolmogorov V (2004) An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans Pattern Anal Mach Intell 26:1124–1137

    Article  PubMed  Google Scholar 

  7. Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  8. Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Disc 2:121–167

    Article  Google Scholar 

  9. Ciminiello P, Dell’Aversano C, Fattorusso E, Forino M, Magno GS, Tartaglione L, Melchiorre N (2006) The Genoa 2005 outbreak. Determination of putative palytoxin in Mediterranean Ostreopsis ovata by a new liquid chromatography tandem mass spectrometry method. Analyt Chem 78:6153–6159

  10. Ciminiello P, Dell’Aversano C, Fattorusso E, Forino M, Tartaglione L, Grillo C, Melchiorre N (2008) Putative palytoxin and its new analogue, ovatoxin-a, in Ostreopsis ovata collected along the Ligurian coasts during the 2006 toxic outbreak. J Am Soc Mass Spectrom 19:111–120

    CAS  Article  PubMed  Google Scholar 

  11. Ciminiello P, Dell’Aversano C, Dello Iacovo E, Fattorusso E, Forino M, Grauso L, Vanucci S (2012) Isolation and structure elucidation of ovatoxin-a, the major toxin produced by Ostreopsis ovata. J Am Chem Soc 134:1869–1875

    CAS  Article  PubMed  Google Scholar 

  12. Coltelli P, Barsanti L, Evangelista V, Frassanito AM, Gualtieri P (2014) Water monitoring: automated and real time identification and classification of algae using digital microscopy. Environ Sci Process Impacts 16:2656–2665

    CAS  Article  PubMed  Google Scholar 

  13. Culverhouse PF, Williams R, Reguera B, Herry V, González-Gil S (2003) Do experts make mistakes? A comparison of human and machine identification of dinoflagellates. Mar Ecol Prog Ser 247:17–25

    Article  Google Scholar 

  14. Egmont-Petersen M, de Ridder D, Handels H (2002) Image processing with neural networks—a review. Patt Recogn 35:2279–2301

    Article  Google Scholar 

  15. El Mallahi A, Minetti C, Dubois F (2013) Automated three-dimensional detection and classification of living organisms using digital holographic microscopy with partial spatial coherent source: application to the monitoring of drinking water resources. Appl Opt 52:A68–A80

    Article  PubMed  Google Scholar 

  16. Embleton KV, Gibson CE, Heaney SI (2003) Automated counting of phytoplankton by pattern recognition: a comparison with a manual counting method. J Plankton Res 25:669–681

    Article  Google Scholar 

  17. Engl HW, Hanke M, Neubauer A (1996) Regularization of inverse problems. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  18. Escalera L, Benvenuto G, Scalco E, Zingone A, Montresor M (2014) Ultrastructural features of the benthic dinoflagellate Ostreopsis cf. ovata (Dinophyceae). Protist 165:260–274

    Article  PubMed  Google Scholar 

  19. Faimali M, Giussani V, Piazza V, Garaventa F, Corrà C, Asnaghi V, Privitera D, Gallus L, Cattaneo-Vietti R, Mangialajo L, Chiantore M (2012) Toxic effects of harmful benthic dinoflagellate Ostreopsis ovata on invertebrate and vertebrate marine organisms. Mar Environ Res 6:97–107

    Article  Google Scholar 

  20. Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Statist 29:1189–1232

    Article  Google Scholar 

  21. Giussani V, Sbrana F, Asnaghi V, Vassalli M, Faimali M, Casabianca S, Penna A, Ciminiello P, Dell’Aversano C, Tartaglione L, Mazzeo A, Chiantore M (2015) Active role of the mucilage in the toxicity mechanism of the harmful benthic dinoflagellate Ostreopsis cf. ovata. Harmful Algae 44:46–53

    CAS  Article  Google Scholar 

  22. Gjeci N (2015) Master thesis, University of Genova

  23. Gureyev TE, Nugent KA (1997) Rapid quantitative phase imaging using the transport of intensity equation. Opt Commun 133:339–346

    CAS  Article  Google Scholar 

  24. Hilgemann DW (2003) From a pump to a pore: how palytoxin opens the gates. Proc Natl Acad Sci 100:386–388

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Honsell G, De Bortoli M, Boscolo S, Dell’Aversano C, Battocchi C, Fontanive G, Penna A, Berti F, Sosa S, Yasumoto T, Ciminiello P, Poli M, Tubaro A (2011) Harmful dinoflagellate Ostreopsis cf. ovata Fukuyo: detection of ovatoxins in field samples and cell immunolocalization using antipalytoxin antibodies. Env Sci Technol 45:7051–7059

    CAS  Article  Google Scholar 

  26. Honsell G, Bonifacio A, De Bortoli M, Penna A, Battocchi C, Ciminiello P, Dell’Aversano C, Fattorusso E, Sosa S, Yasumoto T, Tubaro A (2013) New insights on cytological and metabolic features of Ostreopsis cf. ovata Fukuyo (Dinophyceae): a multidisciplinary approach. PLoS One 8:e57291

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Hu MK (1962) Visual pattern recognition by moment invariants. IRE Trans Information Theory 8:179–187

    Google Scholar 

  28. ISPRA-ARPA (2012) Monitoraggio di Ostreopsis ovata e Ostreopsis spp.: Protocolli operativi. Quad – R MAR 5/2012. http://www.isprambiente.gov.it/it/pubblicazioni/quaderni/ricerca-marina/monitoraggio-di-ostreopsis-ovata-e-ostreopsis-spp.-protocolli-operativi

  29. Javidi B, Moon I, Yeom S, Carapezza E (2005) Three dimensional imaging and recognition of microorganism using single exposure on-line (SEOL) digital holography. Opt Express 13:4492–4506

    Article  PubMed  Google Scholar 

  30. Kreshchenovskaya MA, Orlova TY (2014) The ultrastructure of the dinoflagellate Ostreopsis cf. ovata Fukuyo, 1981 (Dinophyceae) from the sea of Japan. Russ J Mar Biol 40:273–278

    Article  Google Scholar 

  31. Mir M, Bhaduri B, Wang R, Zhu R, Popescu G (2012) Quantitative phase imaging. Prog Optics 57:133–217

    Article  Google Scholar 

  32. Mosleh MAA, Manssor H, Malek S, Milow P, Salleh A (2012) A preliminary study on automated freshwater algae recognition and classification system. BMC Bioinformatics 13:S17–S25

    Google Scholar 

  33. Nguyen MH, De la Torre F (2010) Optimal feature selection for support vector machines. Pattern Recogn 43:584–591

    Article  Google Scholar 

  34. Nugent K, Paganin D, Barty A (2000) Phase determination of a radiation wave field. Patent: CA 2348912:A1

    Google Scholar 

  35. Orabona F, Castellini C, Caputo B, Jie L, Sandini G (2010) On-line independent support vector machines. Pattern Recogn 43:1402–1412

    Article  Google Scholar 

  36. Rodenacker K, Hense B, Jütting U, Gais P (2006) Automatic analysis of aqueous specimens for phytoplankton structure recognition and population estimation. Microsc Res Tech 69:708–720

    Article  PubMed  Google Scholar 

  37. Schulze K, Tillich UM, Dandekar T, Frohme M (2013) PlanktoVision—an automated analysis system for the identification of phytoplankton. BMC Bioinformatics 14:115

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sok HK, Ooi MPL, Kuang YC (2016) Multivariate alternating decision trees. Pattern Recogn 50:195–209

    Article  Google Scholar 

  39. Sosik HM, Olson RJ (2007) Automated taxonomic classification of phytoplankton sampled with imaging-in-flow cytometry. Limnol Oceanogr Methods 5:204–216

  40. Tao J, Cheng W, Boliang W, Jiezhen X, Nianzhi J, Tingwei L (2010) Real-time red tide algae recognition using SVM and SVDD. Intelligent computing and intelligent systems (ICIS). IEEE International Conference 1:602–606

    Google Scholar 

  41. Teague MR (1983) Deterministic phase retrieval: a Green's function solution. J Opt Soc Am 73:1434–1441

    Article  Google Scholar 

  42. Tichadou L, Glaizal M, Armengaud A, Grossel H, Lemée R, Kantin R, Lasalle JL, Drouet G, Rambaud L, Malfait P, de Haro L (2010) Health impact of unicellular algae of the Ostreopsis genus blooms in the Mediterranean Sea: experience of the French Mediterranean coast surveillance network from 2006 to 2009. Clin Toxicol 48:839–844

    Article  Google Scholar 

  43. Totti C, Accoroni S, Cerino F, Cucchiari E, Romagnoli T (2010) Ostreopsis ovata bloom along the Conero Riviera (northern Adriatic Sea): relationships with environmental conditions and substrata. Harmful Algae 9:233–239

    Article  Google Scholar 

  44. Utermöhl H (1958) Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitt Int Ver Theor Angew Limnol 9:1–38

    Google Scholar 

  45. Verikas A, Gelzinis A, Bacauskiene M, Olenina I, Olenin S, Vaiciukynas E (2012) Automated image analysis- and soft computing-based detection of the invasive dinoflagellate Prorocentrum minimum (Pavillard) Schiller. Expert Syst Appl 39:6069–6077

    Article  Google Scholar 

  46. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans. Evol Comput 1:67–82

    Article  Google Scholar 

  47. Zuiderveld K (1994) Contrast limited adaptive histogram equalization. In: Graphics Gems IV, San Diego: Academic Press

  48. Zetsche EM, El Mallahi A, Dubois F, Yourassowsky C, Kromkamp JC, Meysman FJR (2014) Imaging-in-flow: digital holographic microscopy as a novel tool to detect and classify nanoplanktonic organisms. Limnol Oceanogr 12:757–775Methods

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the ENPI Project: “Risk Monitoring, Modelling and Mitigation of Benthic Harmful Algal Blooms along Mediterranean coasts (M3-HABs)—II-B/2.1/0096”; by Regional program FAS 2007-2013 Progetto 4 “Programma triennale per la ricerca e l'innovazione: progetti integrati ad alta tecnologia”; and by PO-CRO fondo sociale europeo regione Liguria 2007-2013.

The authors wish to thank Sitem srl Italy, for the support in software development, and VacuumFAB srl Italy for the opto-mechanical design.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Francesca Sbrana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sbrana, F., Landini, E., Gjeci, N. et al. OvMeter: an automated 3D-integrated opto-electronic system for Ostreopsis cf. ovata bloom monitoring. J Appl Phycol 29, 1363–1375 (2017). https://doi.org/10.1007/s10811-017-1069-7

Download citation

Keywords

  • Ostreopsis Cf. ovata
  • Dinoflagellate, automated environmental monitoring
  • Image processing
  • Pattern recognition