Journal of Applied Phycology

, Volume 29, Issue 3, pp 1363–1375 | Cite as

OvMeter: an automated 3D-integrated opto-electronic system for Ostreopsis cf. ovata bloom monitoring

  • Francesca SbranaEmail author
  • Ettore Landini
  • Nikolla Gjeci
  • Federica Viti
  • Ennio Ottaviani
  • Massimo Vassalli


Over the last decade, toxic events along the Mediterranean coast associated with exceptional harmful blooms of the dinoflagellate Ostreopsis cf. ovata have increased in frequency and distribution, causing not only the death of marine organisms and human health problems, but also economic loss on the tourism and aquaculture industries. In order to reduce the burden of routine algal counting, an innovative automated, low-cost, opto-electronic system called OvMeter was developed. It is able to speed up the monitoring process and therefore it enables early warning of incipient harmful algal blooms. An ad-hoc software tool provides automated cell recognition, counting and real-time calculation of the final algal concentration. The core of dinoflagellate recognition relies on a localization step which takes advantage of the synergistic exploitation of 2D bright-field and quantitative phase microscopy images, and a classification phase performed by a machine learning algorithm based on Boosted Trees approach. The architectural design of the OvMeter device is presented here, together with a performance evaluation on sea samples.


Ostreopsis Cf. ovata Dinoflagellate, automated environmental monitoring Image processing Pattern recognition 



This work was supported by the ENPI Project: “Risk Monitoring, Modelling and Mitigation of Benthic Harmful Algal Blooms along Mediterranean coasts (M3-HABs)—II-B/2.1/0096”; by Regional program FAS 2007-2013 Progetto 4 “Programma triennale per la ricerca e l'innovazione: progetti integrati ad alta tecnologia”; and by PO-CRO fondo sociale europeo regione Liguria 2007-2013.

The authors wish to thank Sitem srl Italy, for the support in software development, and VacuumFAB srl Italy for the opto-mechanical design.


  1. Accoroni S, Romagnoli T, Pichierri S, Colombo F, Totti C (2012) Morphometric analysis of Ostreopsis cf. ovata cells in relation to environmental conditions and bloom phases. Harmful Algae 19:15–22CrossRefGoogle Scholar
  2. Barty A, Nugent KA, Paganin D, Roberts A (1998) Quantitative optical phase microscopy. Opt Lett 23:817–819CrossRefPubMedGoogle Scholar
  3. Bernal AJ, Ferrando SE, Bernal LJ (2008) Cell recognition using wavelet templates. Proc. Canadian Conference on Electrical and Computer Engineering 1219–1222Google Scholar
  4. Besada EG, Loeblich LA, Loeblich AR (1982) Observations on tropical, benthic dinoflagellates from ciguatera-endemic areas: Coolia, Gambierdiscus, and Ostreopsis. Bull Mar Sci 32:723–735Google Scholar
  5. Bishop C (2007) Pattern recognition and machine learning. Springer, HeidelbergGoogle Scholar
  6. Boykov YY, Kolmogorov V (2004) An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans Pattern Anal Mach Intell 26:1124–1137CrossRefPubMedGoogle Scholar
  7. Breiman L (2001) Random forests. Mach Learn 45:5–32CrossRefGoogle Scholar
  8. Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Disc 2:121–167CrossRefGoogle Scholar
  9. Ciminiello P, Dell’Aversano C, Fattorusso E, Forino M, Magno GS, Tartaglione L, Melchiorre N (2006) The Genoa 2005 outbreak. Determination of putative palytoxin in Mediterranean Ostreopsis ovata by a new liquid chromatography tandem mass spectrometry method. Analyt Chem 78:6153–6159Google Scholar
  10. Ciminiello P, Dell’Aversano C, Fattorusso E, Forino M, Tartaglione L, Grillo C, Melchiorre N (2008) Putative palytoxin and its new analogue, ovatoxin-a, in Ostreopsis ovata collected along the Ligurian coasts during the 2006 toxic outbreak. J Am Soc Mass Spectrom 19:111–120CrossRefPubMedGoogle Scholar
  11. Ciminiello P, Dell’Aversano C, Dello Iacovo E, Fattorusso E, Forino M, Grauso L, Vanucci S (2012) Isolation and structure elucidation of ovatoxin-a, the major toxin produced by Ostreopsis ovata. J Am Chem Soc 134:1869–1875CrossRefPubMedGoogle Scholar
  12. Coltelli P, Barsanti L, Evangelista V, Frassanito AM, Gualtieri P (2014) Water monitoring: automated and real time identification and classification of algae using digital microscopy. Environ Sci Process Impacts 16:2656–2665CrossRefPubMedGoogle Scholar
  13. Culverhouse PF, Williams R, Reguera B, Herry V, González-Gil S (2003) Do experts make mistakes? A comparison of human and machine identification of dinoflagellates. Mar Ecol Prog Ser 247:17–25CrossRefGoogle Scholar
  14. Egmont-Petersen M, de Ridder D, Handels H (2002) Image processing with neural networks—a review. Patt Recogn 35:2279–2301CrossRefGoogle Scholar
  15. El Mallahi A, Minetti C, Dubois F (2013) Automated three-dimensional detection and classification of living organisms using digital holographic microscopy with partial spatial coherent source: application to the monitoring of drinking water resources. Appl Opt 52:A68–A80CrossRefPubMedGoogle Scholar
  16. Embleton KV, Gibson CE, Heaney SI (2003) Automated counting of phytoplankton by pattern recognition: a comparison with a manual counting method. J Plankton Res 25:669–681CrossRefGoogle Scholar
  17. Engl HW, Hanke M, Neubauer A (1996) Regularization of inverse problems. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  18. Escalera L, Benvenuto G, Scalco E, Zingone A, Montresor M (2014) Ultrastructural features of the benthic dinoflagellate Ostreopsis cf. ovata (Dinophyceae). Protist 165:260–274CrossRefPubMedGoogle Scholar
  19. Faimali M, Giussani V, Piazza V, Garaventa F, Corrà C, Asnaghi V, Privitera D, Gallus L, Cattaneo-Vietti R, Mangialajo L, Chiantore M (2012) Toxic effects of harmful benthic dinoflagellate Ostreopsis ovata on invertebrate and vertebrate marine organisms. Mar Environ Res 6:97–107CrossRefGoogle Scholar
  20. Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Statist 29:1189–1232CrossRefGoogle Scholar
  21. Giussani V, Sbrana F, Asnaghi V, Vassalli M, Faimali M, Casabianca S, Penna A, Ciminiello P, Dell’Aversano C, Tartaglione L, Mazzeo A, Chiantore M (2015) Active role of the mucilage in the toxicity mechanism of the harmful benthic dinoflagellate Ostreopsis cf. ovata. Harmful Algae 44:46–53CrossRefGoogle Scholar
  22. Gjeci N (2015) Master thesis, University of GenovaGoogle Scholar
  23. Gureyev TE, Nugent KA (1997) Rapid quantitative phase imaging using the transport of intensity equation. Opt Commun 133:339–346CrossRefGoogle Scholar
  24. Hilgemann DW (2003) From a pump to a pore: how palytoxin opens the gates. Proc Natl Acad Sci 100:386–388CrossRefPubMedPubMedCentralGoogle Scholar
  25. Honsell G, De Bortoli M, Boscolo S, Dell’Aversano C, Battocchi C, Fontanive G, Penna A, Berti F, Sosa S, Yasumoto T, Ciminiello P, Poli M, Tubaro A (2011) Harmful dinoflagellate Ostreopsis cf. ovata Fukuyo: detection of ovatoxins in field samples and cell immunolocalization using antipalytoxin antibodies. Env Sci Technol 45:7051–7059CrossRefGoogle Scholar
  26. Honsell G, Bonifacio A, De Bortoli M, Penna A, Battocchi C, Ciminiello P, Dell’Aversano C, Fattorusso E, Sosa S, Yasumoto T, Tubaro A (2013) New insights on cytological and metabolic features of Ostreopsis cf. ovata Fukuyo (Dinophyceae): a multidisciplinary approach. PLoS One 8:e57291CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hu MK (1962) Visual pattern recognition by moment invariants. IRE Trans Information Theory 8:179–187Google Scholar
  28. ISPRA-ARPA (2012) Monitoraggio di Ostreopsis ovata e Ostreopsis spp.: Protocolli operativi. Quad – R MAR 5/2012.
  29. Javidi B, Moon I, Yeom S, Carapezza E (2005) Three dimensional imaging and recognition of microorganism using single exposure on-line (SEOL) digital holography. Opt Express 13:4492–4506CrossRefPubMedGoogle Scholar
  30. Kreshchenovskaya MA, Orlova TY (2014) The ultrastructure of the dinoflagellate Ostreopsis cf. ovata Fukuyo, 1981 (Dinophyceae) from the sea of Japan. Russ J Mar Biol 40:273–278CrossRefGoogle Scholar
  31. Mir M, Bhaduri B, Wang R, Zhu R, Popescu G (2012) Quantitative phase imaging. Prog Optics 57:133–217CrossRefGoogle Scholar
  32. Mosleh MAA, Manssor H, Malek S, Milow P, Salleh A (2012) A preliminary study on automated freshwater algae recognition and classification system. BMC Bioinformatics 13:S17–S25Google Scholar
  33. Nguyen MH, De la Torre F (2010) Optimal feature selection for support vector machines. Pattern Recogn 43:584–591CrossRefGoogle Scholar
  34. Nugent K, Paganin D, Barty A (2000) Phase determination of a radiation wave field. Patent: CA 2348912:A1Google Scholar
  35. Orabona F, Castellini C, Caputo B, Jie L, Sandini G (2010) On-line independent support vector machines. Pattern Recogn 43:1402–1412CrossRefGoogle Scholar
  36. Rodenacker K, Hense B, Jütting U, Gais P (2006) Automatic analysis of aqueous specimens for phytoplankton structure recognition and population estimation. Microsc Res Tech 69:708–720CrossRefPubMedGoogle Scholar
  37. Schulze K, Tillich UM, Dandekar T, Frohme M (2013) PlanktoVision—an automated analysis system for the identification of phytoplankton. BMC Bioinformatics 14:115CrossRefPubMedPubMedCentralGoogle Scholar
  38. Sok HK, Ooi MPL, Kuang YC (2016) Multivariate alternating decision trees. Pattern Recogn 50:195–209CrossRefGoogle Scholar
  39. Sosik HM, Olson RJ (2007) Automated taxonomic classification of phytoplankton sampled with imaging-in-flow cytometry. Limnol Oceanogr Methods 5:204–216Google Scholar
  40. Tao J, Cheng W, Boliang W, Jiezhen X, Nianzhi J, Tingwei L (2010) Real-time red tide algae recognition using SVM and SVDD. Intelligent computing and intelligent systems (ICIS). IEEE International Conference 1:602–606Google Scholar
  41. Teague MR (1983) Deterministic phase retrieval: a Green's function solution. J Opt Soc Am 73:1434–1441CrossRefGoogle Scholar
  42. Tichadou L, Glaizal M, Armengaud A, Grossel H, Lemée R, Kantin R, Lasalle JL, Drouet G, Rambaud L, Malfait P, de Haro L (2010) Health impact of unicellular algae of the Ostreopsis genus blooms in the Mediterranean Sea: experience of the French Mediterranean coast surveillance network from 2006 to 2009. Clin Toxicol 48:839–844CrossRefGoogle Scholar
  43. Totti C, Accoroni S, Cerino F, Cucchiari E, Romagnoli T (2010) Ostreopsis ovata bloom along the Conero Riviera (northern Adriatic Sea): relationships with environmental conditions and substrata. Harmful Algae 9:233–239CrossRefGoogle Scholar
  44. Utermöhl H (1958) Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitt Int Ver Theor Angew Limnol 9:1–38Google Scholar
  45. Verikas A, Gelzinis A, Bacauskiene M, Olenina I, Olenin S, Vaiciukynas E (2012) Automated image analysis- and soft computing-based detection of the invasive dinoflagellate Prorocentrum minimum (Pavillard) Schiller. Expert Syst Appl 39:6069–6077CrossRefGoogle Scholar
  46. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans. Evol Comput 1:67–82CrossRefGoogle Scholar
  47. Zuiderveld K (1994) Contrast limited adaptive histogram equalization. In: Graphics Gems IV, San Diego: Academic PressGoogle Scholar
  48. Zetsche EM, El Mallahi A, Dubois F, Yourassowsky C, Kromkamp JC, Meysman FJR (2014) Imaging-in-flow: digital holographic microscopy as a novel tool to detect and classify nanoplanktonic organisms. Limnol Oceanogr 12:757–775MethodsCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Francesca Sbrana
    • 1
    Email author
  • Ettore Landini
    • 1
  • Nikolla Gjeci
    • 2
  • Federica Viti
    • 1
  • Ennio Ottaviani
    • 2
  • Massimo Vassalli
    • 1
  1. 1.Institute of Biophysics, National Research CouncilGenoaItaly
  2. 2.OnAir srlGenoaItaly

Personalised recommendations