Skip to main content

Seasonal variation in nitrogenous components and bioactivity of protein hydrolysates from Porphyra dioica

Abstract

The red macroalga Porphyra dioica has been harvested and consumed for centuries. Based on its nutritional composition, availability and consumer familiarity, significant potential exists to develop this species as a source of high-value functional food ingredients. Therefore, a detailed assessment of the natural variation in P. dioica nitrogenous components was performed to identify the optimal season for biomass harvesting with high bioactive peptide potential. Kjeldahl nitrogen analysis revealed that total nitrogen (TN) and protein nitrogen (PN) contents in P. dioica (expressed as (w/w) dry weight) from western Ireland ranged from 2.48 to 4.94% and 1.90 to 4.30%, respectively. Significant differences in protein contents were observed between samples collected in summer and winter months. Electrophoretic analysis also showed differences in the protein profiles of P. dioica collected at different times of the year. P. dioica protein extracts were hydrolysed with the food-grade proteolytic preparations, Alcalase 2.4 L and Flavourzyme 500 L, and significant seasonal differences were observed in in vitro bioactivity assays. The oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) values of the hydrolysates ranged from 229.5 to 1015.3 and 4.1 to 28.7 μmol Trolox equivalent per gram of freeze-dried powder, respectively. The P. dioica hydrolysates also inhibited angiotensin-converting enzyme (ACE; half maximal inhibitory concentration, IC50, 0.34 to 1.78 mg mL−1) and dipeptidyl peptidase-IV (DPP-IV; IC50, 1.14 to 5.06 mg mL−1). The results demonstrate the potential of P. dioica hydrolysates as health-enhancing food components or natural food preservatives due to their enzyme inhibitory and antioxidant activities.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Ahn C-B, Jeon Y-J, Kang D-S, Shin T-S, Jung B-M (2004) Free radical scavenging activity of enzymatic extracts from a brown seaweed Scytosiphon lomentaria by electron spin resonance spectrometry. Food Res Int 37:253–258

    CAS  Article  Google Scholar 

  2. Angell AR, Mata L, de Nys R, Paul NA (2016) The protein content of seaweeds: a universal nitrogen-to-protein conversion factor of five. J Appl Phycol 28:511–524

    CAS  Article  Google Scholar 

  3. Atkinson AB, Robertson JI (1979) Captopril in the treatment of clinical hypertension and cardiac failure. Lancet 2:836–839

    CAS  Article  PubMed  Google Scholar 

  4. Beaulieu L, Sirois M, Tamigneaux É (2016) Evaluation of the in vitro biological activity of protein hydrolysates of the edible red alga, Palmaria palmata (dulse) harvested from the Gaspe coast and cultivated in tanks. J Appl Phycol 28:3101–3115

    Article  Google Scholar 

  5. Bensadoun A, Weinstein D (1976) Assay of proteins in the presence of interfering materials. Anal Biochem 70:241–250

    CAS  Article  PubMed  Google Scholar 

  6. Bondu S, Bonnet C, Gaubert J, Deslandes É, Turgeon SL, Beaulieu L (2015) Bioassay-guided fractionation approach for determination of protein precursors of proteolytic bioactive metabolites from macroalgae. J Appl Phycol 27:2059–2074

    CAS  Article  Google Scholar 

  7. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  Article  PubMed  Google Scholar 

  8. Butterfield DA, Abdul HM, Opii W, Newman SF, Joshi G, Ansari MA, Sultana R (2006) Pin1 in Alzheimer’s disease. J Neurochem 98:1697–1706

    CAS  Article  PubMed  Google Scholar 

  9. Cian RE, Alaiz M, Vioque J, Drago SR (2013) Enzyme proteolysis enhanced extraction of ACE inhibitory and antioxidant compounds (peptides and polyphenols) from Porphyra columbina residual cake. J Appl Phycol 25:1197–1206

    CAS  Article  Google Scholar 

  10. Cian RE, Martinez-Augustin O, Drago SR (2012) Bioactive properties of peptides obtained by enzymatic hydrolysis from protein byproducts of Porphyra columbina. Food Res Int 49:364–372

    CAS  Article  Google Scholar 

  11. Climate Annual, Ireland, 2014 (2015) Met Éireann. http://www.met.ie/climate/MonthlyWeather/clim-2014-ann.pdf. Accessed 6/7/2016

  12. Connolly A, Piggott CO, FitzGerald RJ (2013) Characterisation of protein-rich isolates and antioxidative phenolic extracts from pale and black brewers’ spent grain. International J Food Sci Technol 48:1670–1681

    CAS  Article  Google Scholar 

  13. Connolly A, Piggott CO, FitzGerald RJ (2014) In vitro alpha-glucosidase, angiotensin converting enzyme and dipeptidyl peptidase-IV inhibitory properties of brewers’ spent grain protein hydrolysates. Food Res Int 56:100–107

    CAS  Article  Google Scholar 

  14. Deacon CF, Johnsen AH, Holst JJ (1995) Degradation of glucagon-like peptide-1 by human plasma in vitro yields an N-terminally truncated peptide that is a major endogenous metabolite in vivo. J Clin Endocr Metab 80:952–957

    CAS  PubMed  Google Scholar 

  15. Erdmann K, Cheung BW, Schroder H (2008) The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease. J Nutr Biochem 19:643–654

    CAS  Article  PubMed  Google Scholar 

  16. Fleurence J (2004) Seaweed proteins. In: Yada RY (ed) Proteins in food processing. Woodhead Publishing Limited, Cambridge, UK, pp 197–213

    Chapter  Google Scholar 

  17. Glazer AN (1994) Phycobiliproteins—a family of valuable, widely used fluorophores. J Appl Phycol 6:105–112

    CAS  Article  Google Scholar 

  18. Guo L, Harnedy PA, Zhang L, Li B, Zhang Z, Hou H, Zhao X, FitzGerald RJ (2015) In vitro assessment of the multifunctional bioactive potential of Alaska Pollock skin collagen following simulated gastrointestinal digestion. J Sci Food Agric 95:1514–1520

    CAS  Article  PubMed  Google Scholar 

  19. Hafting JT, Craigie JS, Stengel DB, Loureiro RR, Buschmann AH, Yarish C, Edwards MD, Critchley AT (2015) Prospects and challenges for industrial production of seaweed bioactives. J Phycol 51:821–837

    CAS  Article  PubMed  Google Scholar 

  20. Harnedy PA, FitzGerald RJ (2011) Bioactive proteins, peptides, and amino acids from macroalgae. J Phycol 47:218–232

    CAS  Article  PubMed  Google Scholar 

  21. Harnedy PA, FitzGerald RJ (2013) In vitro assessment of the cardioprotective, anti-diabetic and antioxidant potential of Palmaria palmata protein hydrolysates. J Appl Phycol 25:1793–1803

    CAS  Article  Google Scholar 

  22. Harnedy PA, O’Keeffe MB, FitzGerald RJ (2015) Purification and identification of dipeptidyl peptidase (DPP) IV inhibitory peptides from the macroalga Palmaria palmata. Food Chem 172:400–406

    CAS  Article  PubMed  Google Scholar 

  23. Harnedy PA, Soler-Vila A, Edwards MD, FitzGerald RJ (2014) The effect of time and origin of harvest on the in vitro biological activity of Palmaria palmata protein hydrolysates. Food Res Int 62:746–752

    CAS  Article  Google Scholar 

  24. Hatanaka T, Inoue Y, Arima J, Kumagai Y, Usuki H, Kawakami K, Kimura M, Mukaihara T (2012) Production of dipeptidyl peptidase IV inhibitory peptides from defatted rice bran. Food Chem 134:797–802

    CAS  Article  PubMed  Google Scholar 

  25. He HL, Chen XL, Wu H, Sun CY, Zhang YZ, Zhou BC (2007) High throughput and rapid screening of marine protein hydrolysates enriched in peptides with angiotensin-I-converting enzyme inhibitory activity by capillary electrophoresis. Bioresour Technol 98:3499–3505

    CAS  Article  PubMed  Google Scholar 

  26. Kalyankar P, Zhu Y, O’Keeffe M, O’Cuinn G, FitzGerald RJ (2013) Substrate specificity of glutamyl endopeptidase (GE): hydrolysis studies with a bovine alpha-casein preparation. Food Chem 136:501–512

    CAS  Article  PubMed  Google Scholar 

  27. Kannel WB, Higgins M (1990) Smoking and hypertension as predictors of cardiovascular risk in population studies. J Hypertens 8:S3–S8

    CAS  Google Scholar 

  28. Karsten U, West JA, Zuccarello GC, Nixdorf O, Barrow KD, King RJ (1999) Low molecular weight carbohydrate patterns in the Bangiophyceae (Rhodophyta). J Phycol 35:967–976

    CAS  Article  Google Scholar 

  29. Khantaphant S, Benjakul S, Ghomi MR (2011) The effects of pretreatments on antioxidative activities of protein hydrolysate from the muscle of brownstripe red snapper (Lutjanus vitta). LWT-Food Sci Technol 44:1139–1148

  30. Ko SC, Kim D, Jeon YJ (2012) Protective effect of a novel antioxidative peptide purified from a marine Chlorella ellipsoidea protein against free radical-induced oxidative stress. Food Chem Toxicol 50:2294–2302

    CAS  Article  PubMed  Google Scholar 

  31. Le Maux S, Nongonierma AB, Barre C, FitzGerald RJ (2016) Enzymatic generation of whey protein hydrolysates under pH-controlled and non pH-controlled conditions: impact on physicochemical and bioactive properties. Food Chem 199:246–251

    CAS  Article  PubMed  Google Scholar 

  32. Levine IA, Sahoo D (2010) Porphyra: harvesting gold from the sea. IK International Pvt Ltd

  33. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  34. Marinho-Soriano E, Fonseca PC, Carneiro MA, Moreira WS (2006) Seasonal variation in the chemical composition of two tropical seaweeds. Bioresour Technol 97:2402–2406

    CAS  Article  PubMed  Google Scholar 

  35. Martinez B, Rico JM (2002) Seasonal variation of P content and major N pools in Palmaria palmata (Rhodophyta). J Phycol 38:1082–1089

    CAS  Article  Google Scholar 

  36. Meisel H, Walsh D, Murray B, FitzGerald R, Mine Y, Shahidi F (2006) ACE inhibitory peptides. In: Nutraceutical proteins and peptides in health and disease. CRC Press, Boca Raton, pp 269–315

  37. Ngo DH, Wijesekara I, Vo TS, Ta QV, Kim SK (2011) Marine food-derived functional ingredients as potential antioxidants in the food industry: an overview. Food Res Int 44:523–529

    CAS  Article  Google Scholar 

  38. Ni H, Li L, Liu G, Hu SQ (2012) Inhibition mechanism and model of an angiotensin I-converting enzyme (ACE)-inhibitory hexapeptide from yeast (Saccharomyces cerevisiae). PLoS One 7:e37077

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Nongonierma AB, FitzGerald RJ (2013) Dipeptidyl peptidase IV inhibitory and antioxidative properties of milk protein-derived dipeptides and hydrolysates. Peptides 39:157–163

    CAS  Article  PubMed  Google Scholar 

  40. Nongonierma AB, O’Keeffe MB, FitzGerald RJ (2016) Milk protein hydrolysates and bioactive peptides. In: Advanced dairy chemistry. Springer, Berlin, pp 417–482

  41. Paradis ME, Couture P, Lamarche B (2011) A randomised crossover placebo-controlled trial investigating the effect of brown seaweed (Ascophyllum nodosum and Fucus vesiculosus) on postchallenge plasma glucose and insulin levels in men and women. Appl Physiol Nutr Metab 36:913–919

    CAS  Article  PubMed  Google Scholar 

  42. Pena-Ramos EA, Xiong YL (2003) Whey and soy protein hydrolysates inhibit lipid oxidation in cooked pork patties. Meat Sci 64:259–263

    CAS  Article  PubMed  Google Scholar 

  43. Pihlanto-Leppala A (2000) Bioactive peptides derived from bovine whey proteins: opioid and ACE-inhibitory peptides. Trends Food Sci Tech 11:347–356

    CAS  Article  Google Scholar 

  44. Rajapakse N, Mendis E, Byun HG, Kim SK (2005) Purification and in vitro antioxidative effects of giant squid muscle peptides on free radical-mediated oxidative systems. J Nutr Biochem 16:562–569

    CAS  Article  PubMed  Google Scholar 

  45. Rouxel C, Daniel A, Jerome M, Etienne M, Fleurence J (2001) Species identification by SDS-PAGE of red algae used as seafood or a food ingredient. Food Chem 74:349–353

    CAS  Article  Google Scholar 

  46. Saha SK, McHugh E, Murray P, Walsh DJ (2015) Microalgae as a source of nutraceuticals. In: Phycotoxins: chemistry and biochemistry, Wiley, NY, 2nd edn. pp 255–291

  47. Sakanaka S, Tachibana Y (2006) Active oxygen scavenging activity of egg-yolk protein hydrolysates and their effects on lipid oxidation in beef and tuna homogenates. Food Chem 95:243–249

    CAS  Article  Google Scholar 

  48. Smith JL, Summers G, Wong R (2010) Nutrient and heavy metal content of edible seaweeds in New Zealand. N Z J Crop Hort 38:19–28

    CAS  Article  Google Scholar 

  49. Smyth M, FitzGerald RJ (1998) Relationship between some characteristics of WPC hydrolysates and the enzyme complement in commercially available proteinase preparations. Int Dairy J 8:819–827

    CAS  Article  Google Scholar 

  50. Spellman D, Kenny P, O’Cuinn G, FitzGerald RJ (2005) Aggregation properties of whey protein hydrolysates generated with Bacillus licheniformis proteinase activities. J Agric Food Chem 53:1258–1265

    CAS  Article  PubMed  Google Scholar 

  51. Suetsuna K (1998) Purification and identification of angiotensin I-converting enzyme inhibitors from the red alga Porphyra yezoensis. J Mar Biotechnol 6:163–167

    CAS  PubMed  Google Scholar 

  52. Sun L, Wang S, Gong X, Chen L (2004) A rod-linker-contained R-phycoerythrin complex from the intact phycobilisome of the marine red alga Polysiphonia urceolata. J Photochem Photobiol B 76:1–11

    CAS  Article  PubMed  Google Scholar 

  53. Van Amerongen A, Beelen-Thomissen M, Van Zeeland-Wolbers L, Van Gilst W, Buikema J, Nelissen J (2009) Egg protein hydrolysates. PCT Patent Application WO/2009/128713

  54. Wang W, Vignani R, Scali M, Cresti M (2006) A universal and rapid protocol for protein extraction from recalcitrant plant tissues for proteomic analysis. Electrophoresis 27:2782–2786

    CAS  Article  PubMed  Google Scholar 

  55. Wong KH, Cheung PCK (2000) Nutritional evaluation of some subtropical red and green seaweeds: part I—proximate composition, amino acid profiles and some physico-chemical properties. Food Chem 71:475–482

    CAS  Article  Google Scholar 

  56. Yabuta Y, Fujimura H, Kwak CS, Enomoto T, Watanabe F (2010) Antioxidant activity of the phycoerythrobilin compound formed from a dried Korean purple laver (Porphyra sp.) during in vitro digestion. Food Sci Technol Res 16:347–352

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Alice Nongonierma and Alan Connolly for assistance with GP-HPLC analysis. This work was supported under the National Development Plan 2007–2013, through the Marine Functional Food Research Initiative, and the Food Institutional Research Measure, administered by the Department of Agriculture, Food, and the Marine, Ireland under grant issue 13/F/536.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Richard J. FitzGerald.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stack, J., Tobin, P.R., Gietl, A. et al. Seasonal variation in nitrogenous components and bioactivity of protein hydrolysates from Porphyra dioica . J Appl Phycol 29, 2439–2450 (2017). https://doi.org/10.1007/s10811-017-1063-0

Download citation

Keywords

  • Bioactive peptides
  • Enzymatic hydrolysis
  • Antioxidant
  • ACE
  • DPP-IV
  • Macroalgae