Journal of Applied Phycology

, Volume 29, Issue 5, pp 2651–2666 | Cite as

Seasonal phenology and metabolomics of the introduced red macroalga Gracilaria vermiculophylla, monitored in the Bay of Brest (France)

  • Gwladys Surget
  • Klervi Le Lann
  • Gaspard Delebecq
  • Nelly Kervarec
  • Anne Donval
  • Marie-Aude Poullaouec
  • Isabelle Bihannic
  • Nathalie Poupart
  • Valérie Stiger-Pouvreau
22ND INTERNATIONAL SEAWEED SYMPOSIUM, COPENHAGEN

Abstract

Seaweeds represent one of the largest groups of marine aliens in Europe and constitute a large percentage of all introduced marine species. In Brittany, the red macroalga Gracilaria vermiculophylla has invaded the bare areas of brackish waters in saltmarshes. In the Bay of Brest, the alga forms dense monospecific mats on the mud surface and occupies an empty ecological niche, in association with the invasive halophyte, Spartina alterniflora. The phenology of G. vermiculophylla was studied through seasonal monitoring of biomass, density and size of fragments, complemented by metabolomic monitoring using 1H HR-MAS NMR chemical footprinting analyses. Moreover, lipids and pigments were quantified, using high-performance thin layer chromatography for the former and high-performance liquid chromatography and spectrophotometry for the latter. This rhodophyte is present throughout the year, never fixed to a substrate on the mud, with a maximum biomass in the summertime. Phenological observations on algal populations demonstrated a high capacity for fragmentation, with a majority of fragments shorter than 3 cm. Metabolomic analyses highlighted a temporal variability of lipids, pigments and osmolytes between seasons. These results, combined with ecological data, improve our understanding of the acclimation of G. vermiculophylla in Brittany, where it is mainly present in a vegetative state throughout the year. Our study represents an important contribution to understanding the ecological strategies used by this invasive seaweed to colonize and persist in the Bay of Brest.

Keywords

Gracilaria vermiculophylla Invasive seaweed HR-MAS NMR Population biology Lipid class Osmolyte 

References

  1. Abreu MH, Pereira R, Sousa-Pinto I, Yarish C (2011) Ecophysiological studies of the non-indigenous species Gracilaria vermiculophylla (Rhodophyta) and its abundance patterns in Ria de Aveiro lagoon, Portugal. Eur J Phycol 46:453–464CrossRefGoogle Scholar
  2. Bailey S, Grossman A (2008) Photoprotection in cyanobacteria: regulation of light harvesting. Photochem Photobiol 84:1410–1420CrossRefPubMedGoogle Scholar
  3. Beach KS, Smith CM, Okano R (2005) Experimental analysis of rhodophyte photoacclimation to PAR and UV-radiation using in vivo absorbance spectroscopy. Bot Mar 43:525–536Google Scholar
  4. Bondu S, Kervarec N, Deslandes E, Pichon R (2007) The use of HRMAS NMR spectroscopy to study the in vivo intra-cellular carbon/nitrogen ratio of Solieria chordalis (Rhodophyta). J Appl Phycol 20:673–679CrossRefGoogle Scholar
  5. Bondu S, Cerantola S, Kervarec N, Deslandes E (2009) Impact of the salt stress on the photosynthetic carbon flux and 13C-label distribution within floridoside and digeneaside in Solieria chordalis. Phytochemistry 70:173–184CrossRefPubMedGoogle Scholar
  6. Broberg A, Kenne L, Pedersén M (1998) In-situ identification of major metabolites in the red alga Gracilariopsis lemaneiformis using high-resolution magic angle spinning nuclear magnetic resonance spectroscopy. Planta 206:300–307CrossRefGoogle Scholar
  7. Davidson AM, Jennions M, Nicotra AB (2011) Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis. Ecol Lett 14:419–431CrossRefPubMedGoogle Scholar
  8. Dörmann P, Hölzl G (2009) The role of glycolipids in photosynthesis. In: Wada H, Murata N (eds) Lipids in photosynthesis. Springer, Netherlands, pp 265–282CrossRefGoogle Scholar
  9. Dumay J, Clément N, Morançais M, Fleurence J (2013) Optimization of hydrolysis conditions of Palmaria palmata to enhance R-phycoerythrin extraction. Bioresour Technol 131:21–27CrossRefPubMedGoogle Scholar
  10. Freshwater DW, Montgomery F, Greene JK, Hamner RM, Williams M, Whitfield PE (2006) Distribution and identification of an invasive Gracilaria species that is hampering commercial fishing operations in Southeastern North Carolina, USA. Biol Invasions 8:631–637CrossRefGoogle Scholar
  11. Gulbransen D, McGlathery K (2013) Nitrogen transfers mediated by a perennial, non-native macroalga: a 15N tracer study. Mar Ecol Prog Ser 482:299–304CrossRefGoogle Scholar
  12. Gulbransen DJ, Thomsen MS, McGlathery KJ (2013) A global perspective on the Gracilaria vermiculophylla invasion: what is currently known and what is still needed. In: Gracilaria vermiculophylla in the Virginia coastal bays: documenting the distribution and effects of a non-native species, PhD Thesis, University of Virginia pp 151–192Google Scholar
  13. Gupta V, Thakur RS, Reddy CRK, Jha B (2013) Central metabolic processes of marine macrophytic algae revealed from NMR based metabolome analysis. RSC Adv 3:7037–7047CrossRefGoogle Scholar
  14. Guschina IA, Harwood JL (2006) Lipids and lipid metabolism in eukaryotic algae. Prog Lipid Res 45:160–186CrossRefPubMedGoogle Scholar
  15. Haberkorn H, Lambert C, Le Goïc N, Moal J, Suquet M, Guégen M, Sunila I, Soudant P (2010) Effects of Alexandrium minutum exposure on nutrition-related processes and reproductive output in oysters Crassostrea gigas. Harmful Algae 9:427–439CrossRefGoogle Scholar
  16. Hammann M, Buchholz B, Karez R, Weinberger F (2013a) Direct and indirect effects of Gracilaria vermiculophylla on native Fucus vesiculosus. Aquat Invasions 8:121–132CrossRefGoogle Scholar
  17. Hammann M, Wang G, Rickert E, Boo SM, Weinberger F (2013b) Invasion success of the seaweed Gracilaria vermiculophylla correlates with low palatibility. Mar Ecol Prog Ser 486:93–103CrossRefGoogle Scholar
  18. Harrison PJ, Hurd CL (2001) Nutrient physiology of seaweeds: application of concepts to aquaculture. Cah Biol Mar 42:71–82Google Scholar
  19. Hellio C, Simon-Colin C, Clare A, Deslandes E (2004) Isethionic acid and floridoside isolated from the red alga, Grateloupia turuturu, inhibit settlement of Balanus amphitrite cyprid larvae. Biofouling 20:139–145CrossRefPubMedGoogle Scholar
  20. Holst PB, Nielsen SE, Anthoni U, Bisht KS, Christophersen C, Gupta S, Parmar VS, Nielsen PH, Sahoo DB, Singh A (1994) Isethionate in certain red algae. J Appl Phycol 6:443–446CrossRefGoogle Scholar
  21. Hu ZM, Juan LB (2013) Adaptation mechanisms and ecological consequences of seaweed invasions: a review case of agarophyte Gracilaria vermiculophylla. Biol Invasions 16:967–976CrossRefGoogle Scholar
  22. Illijas MI, Indy JR, Yasui H, Itabashi Y (2009) Lipid class and fatty acid composition of a little-known and rarely collected alga Exophyllum wentii Weber-van Bosse from Bali Island, Indonesia. J Oleo Sci 58:103–110CrossRefPubMedGoogle Scholar
  23. Jégou C, Culioli G, Kervarec N, Simon G, Stiger-Pouvreau V (2010) LC/ESI-MSn and 1H HR-MAS NMR analytical methods as useful taxonomical tools within the genus Cystoseira C. Agardh (Fucales; Phaeophyceae). Talanta 83:613–622CrossRefPubMedGoogle Scholar
  24. Kalisch B, Dörmann P, Hölzl G (2016) DGDG and glycolipids in plants and algae. In: Nakamura Y, Li-Beisson Y (eds) Lipids in plant and algae development. Springer, Berlin, pp 51–83CrossRefGoogle Scholar
  25. Kendel M, Couzinet-Mossion A, Viau M, Fleurence J, Barnathan G, Wielgosz-Collin G (2012) Seasonal composition of lipids, fatty acids, and sterols in the edible red alga Grateloupia turuturu. J Appl Phycol 25:425–432CrossRefGoogle Scholar
  26. Khotimchenko SV (2005) Lipids from the marine alga Gracilaria verrucosa. Chem Nat Compd 41:285–288CrossRefGoogle Scholar
  27. Khotimchenko SV, Yakovleva IM (2005) Lipid composition of the red alga Tichocarpus crinitus exposed to different levels of photon irradiance. Phytochemistry 66:73–79CrossRefPubMedGoogle Scholar
  28. Kumar M, Kuzhiumparambil U, Pernice M, Jiang Z, Ralph PJ (2016) Metabolomics: an emerging frontier of systems biology in marine macrophytes. Algal Res 16:76–92CrossRefGoogle Scholar
  29. Lartigue J, Neill A, Hayden BL, Puffer J, Cebrian J (2003) The impact of salinity fluctuations on net oxygen production and inorganic nitrogen uptake by Ulva lactuca (Chlorophyceae). Aquat Bot 75:339–350CrossRefGoogle Scholar
  30. Lasbleiz M, Leblanc K, Blain S, Ras J, Cornet-Barthaux V, Hélias Nunige S, Quéguigner B (2014) Pigments, elemental composition (C, N, P, and Si), and stoichiometry of particulate matter in the naturally iron fertilized region of Kerguelen in the Southern Ocean. Biogeosciences 11:5931–5955CrossRefGoogle Scholar
  31. Le Lann K, Kervarec N, Payri CE, Deslandes E, Stiger-Pouvreau V (2008) Discrimination of allied species within the genus Turbinaria (Fucales, Phaeophyceae) using HRMAS NMR spectroscopy. Talanta 74:1079–1083CrossRefPubMedGoogle Scholar
  32. Le Lann K, Kraffe E, Kervarec N, Cerantola S, Payri CE, Stiger-Pouvreau V (2014) Isolation of turbinaric acid as a chemomarker of Turbinaria conoides (J. Agardh) Kützing from South Pacific Islands. J Phycol 50:1048–1057CrossRefPubMedGoogle Scholar
  33. Lindberg B (1955) Methylated taurines and choline sulphate in red algae. Acta Chem Scand 9:1323–1326CrossRefGoogle Scholar
  34. Lion U, Wiesemeier T, Weinberger F, Beltrán J, Flores V, Faugeron S, Correa J, Pohnert G (2006) Phospholipases and galactolipases trigger oxylipin-mediated wound-activated defence in the red alga Gracilaria chilensis against epiphytes. Chembiochem 7:457–462CrossRefPubMedGoogle Scholar
  35. Liu HB, Koh KP, Kim JS, Seo Y, Park S (2008) The effects of betonicine, floridoside, and isethionic acid from the red alga Ahnfeltiopsis flabelliformis on quorum-sensing activity. Biotechnol Bioprocess Eng 13:458–463CrossRefGoogle Scholar
  36. Muangmai N, Vo TD, Kawaguchi S (2014) Seasonal fluctuation in a marine red alga, Gracilaria vermiculophylla (Gracilariales, Rhodophyta), from Nokonoshima Island, Southern Japan. J Fac Agric Kyushu Univ 59:243–248Google Scholar
  37. Munier M, Jubeau S, Wijaya A, Morançais M, Dumay J, Marchal L, Jaouen P, Fleurence J (2014) Physicochemical factors affecting the stability of two pigments: R-phycoerythrin of Grateloupia turuturu and B-phycoerythrin of Porphyridium cruentum. Food Chem 150:400–407CrossRefPubMedGoogle Scholar
  38. Nejrup LB, Pedersen MF (2012) The effect of temporal variability in salinity on the invasive red alga Gracilaria vermiculophylla. Eur J Phycol 47:254–263CrossRefGoogle Scholar
  39. Nejrup LB, Pedersen MF, Vinzent J (2012) Grazer avoidance may explain the invasiveness of the red alga Gracilaria vermiculophylla in Scandinavian waters. Mar Biol 159:1703–1712CrossRefGoogle Scholar
  40. Nettleton JC, Mathieson AC, Thornber C, Neefus CD, Yarish C (2013) Introduction of Gracilaria vermiculophylla (Rhodophyta, Gracilariales) to New England, USA: estimated arrival times and current distribution. Rhodora 115:28–41CrossRefGoogle Scholar
  41. Nyberg CD (2007) Introduced marine macroalgae and habitat modifiers: their ecological role and significant attributes. PhD thesis, Göteborg University, Sweden 66 ppGoogle Scholar
  42. Nyberg CD, Wallentinus I (2005) Can species traits be used to predict marine macroalgal introductions? Biol Invasions 7:265–279CrossRefGoogle Scholar
  43. Nylund GM, Weinberger F, Rempt M, Pohnert G (2011) Metabolomic assessment of induced and activated chemical defence in the invasive red alga Gracilaria vermiculophylla. PLoS One 6:e29359CrossRefPubMedPubMedCentralGoogle Scholar
  44. Pereira DC, Trigueiro TG, Colepicolo P, Marinho-Soriano E (2012) Seasonal changes in the pigment composition of natural population of Gracilaria domingensis (Gracilariales, Rhodophyta). Rev Bras Farmacogn 22:874–880CrossRefGoogle Scholar
  45. Pettitt TR, Harwood JL (1989) Alterations in lipid metabolism caused by illumination of the marine red algae Chondrus crispus and Polysiphonia lanosa. Phytochemistry 28:3295–3300CrossRefGoogle Scholar
  46. Pintó-Marijuan M, Munné-Bosch S (2013) Ecophysiology of invasive plants: osmotic adjustment and antioxidants. Trends Plant Sci 18:660–666CrossRefPubMedGoogle Scholar
  47. Potin P, Bouarab K, Salaün J-P, Pohnert G, Kloareg B (2002) Biotic interactions of marine algae. Curr Opin Plant Biol 5:308–317CrossRefPubMedGoogle Scholar
  48. Querné J (2011) Invasion de Spartina alterniflora dans les marais de la rade de Brest-Comportement invasif et impact sur le cycle biogéochimique du Silicium. PhD thesis. LEMAR UMR 6539 IUEM, France 217 ppGoogle Scholar
  49. Ras J, Claustre H, Uitz J (2008) Spatial variability of phytoplankton pigment distributions in the Subtropical South Pacific Ocean: comparison between in situ and predicted data. Biogeosciences 5:353–369CrossRefGoogle Scholar
  50. Rempt M, Weinberger F, Grosser K, Pohnert G (2012) Conserved and species-specific oxylipin pathways in the wound-activated chemical defense of the noninvasive red alga Gracilaria chilensis and the invasive Gracilaria vermiculophylla. Beilstein J Org Chem 8:283–289CrossRefPubMedPubMedCentralGoogle Scholar
  51. Roleda MY, Nyberg CD, Wulff A (2012) UVR defense mechanisms in eurytopic and invasive Gracilaria vermiculophylla (Gracilariales, Rhodophyta). Physiol Plant 146:205–216CrossRefPubMedGoogle Scholar
  52. Rueness J (2005) Life history and molecular sequences of Gracilaria vermiculophylla (Gracilariales, Rhodophyta), a new introduction to European waters. Phycologia 44:120–128CrossRefGoogle Scholar
  53. Saffo MB (1987) New light on seaweeds. Bioscience 37:654–664CrossRefGoogle Scholar
  54. Saha M, Wiese J, Weinberger F, Wahl M (2016) Rapid adaptation to controlling new microbial epibionts in the invaded range promotes invasiveness of an exotic seaweed. J Ecol 104:969–978CrossRefGoogle Scholar
  55. Schaffelke B, Smith JE, Hewitt CL (2006) Introduced macroalgae—a growing concern. J Appl Phycol 18:529–541CrossRefGoogle Scholar
  56. Schaffer S, Azuma J, Takahashi K, Mozaffari M (2003) Why is taurine cytoprotective? In: Lombardini JB, Schaffer SW, Azuma J (eds) Taurine 5. Springer, US, pp 307–321CrossRefGoogle Scholar
  57. Simon C, Gall EA, Deslandes E (2001) Expansion of the red alga Grateloupia doryphora along the coasts of Brittany (France). Hydrobiologia 443:23–29CrossRefGoogle Scholar
  58. Simon-Colin C, Kervarec N, Pichon R, Deslandes E (2002) Complete 1H and 13C spectral assignment of floridoside. Carbohydr Res 337:279–280CrossRefPubMedGoogle Scholar
  59. Simon-Colin C, Kervarec N, Pichon R, Deslandes E (2004) NMR 13C-isotopic enrichment experiments to study carbon-partitioning into organic solutes in the red alga Grateloupia doryphora. Plant Physiol Biochem 42:21–26CrossRefPubMedGoogle Scholar
  60. Stengel DB, Connan S, Popper ZA (2011) Algal chemodiversity and bioactivity: sources of natural variability and implications for commercial application. Biotechnol Adv 29:483–501CrossRefPubMedGoogle Scholar
  61. Stiger-Pouvreau V, Thouzeau G (2015) Marine species introduced on the French channel-Atlantic coasts: a review of main biological invasions and impacts. Open J Ecol 05:227–257CrossRefGoogle Scholar
  62. Sun L, Wang S, Gong X, Zhao M, Fu X, Wang L (2009) Isolation, purification and characteristics of R-phycoerythrin from a marine macroalga Heterosiphonia japonica. Protein Expr Purif 64:146–154CrossRefPubMedGoogle Scholar
  63. Tanniou A, Vandanjon L, Gonçalves O, Kervarec N, Stiger-Pouvreau V (2015) Rapid geographical differentiation of the European spread brown macroalga Sargassum muticum using HRMAS NMR and Fourier-transform infrared spectroscopy. Talanta 132:451–456CrossRefPubMedGoogle Scholar
  64. Thirb HH, Benson-Evans K (1985) The effect of suspended solids on the growth of apical tips of gametophyte plants of Lemanea and on carpospore germination and subsequent colonisation. Arch Hydrobiol 103:409–417Google Scholar
  65. Thomsen MS, McGlathery K (2005) Facilitation of macroalgae by the sedimentary tube forming polychaete Diopatra cuprea. Estuar Coast Shelf Sci 62:63–73CrossRefGoogle Scholar
  66. Thomsen MS, Gurgel CFD, Fredericq S, McGlathery KJ (2006) Gracilaria vermiculophylla (Rhodophyta, Gracilariales) in Hog Island Bay, Virginia: a cryptic alien and invasive macroalga and taxonomic correction. J Phycol 42:139–141CrossRefGoogle Scholar
  67. Thomsen MS, Stæhr PA, Nyberg CD, Schwærter S, Krause-Jensen D, Silliman BR (2007) Gracilaria vermiculophylla (Ohmi) Papenfuss, 1967 (Rhodophyta, Gracilariaceae) in northern Europe, with emphasis on Danish conditions, and what to expect in the future. Aquat Invasions 2:83–94CrossRefGoogle Scholar
  68. Thomsen MS, McGlathery KJ, Schwarzschild A, Silliman BR (2009) Distribution and ecological role of the non-native macroalga Gracilaria vermiculophylla in Virginia salt marshes. Biol Invasions 11:2303–2316CrossRefGoogle Scholar
  69. Wang F, Guo XY, Zhang DN, Wu Y, Wu T, Chen ZG (2015) Ultrasound-assisted extraction and purification of taurine from the red algae Porphyra yezoensis. Ultrason Sonochem 24:36–42CrossRefPubMedGoogle Scholar
  70. Weinberger F, Buchholz B, Karez R, Wahl M (2008) The invasive red alga Gracilaria vermiculophylla in the Baltic Sea: adaptation to brackish water may compensate for light limitation. Aquat Biol 3:251–264CrossRefGoogle Scholar
  71. Zubia M, Freile-Pelegrín Y, Robledo D (2014) Photosynthesis, pigment composition and antioxidant defences in the red alga Gracilariopsis tenuifrons (Gracilariales, Rhodophyta) under environmental stress. J Appl Phycol 26:2001–2010CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Gwladys Surget
    • 1
  • Klervi Le Lann
    • 1
  • Gaspard Delebecq
    • 1
  • Nelly Kervarec
    • 2
  • Anne Donval
    • 1
  • Marie-Aude Poullaouec
    • 1
  • Isabelle Bihannic
    • 1
  • Nathalie Poupart
    • 1
  • Valérie Stiger-Pouvreau
    • 1
  1. 1.LEMAR UMR 6539 CNRS UBO IRD Ifremer - Institut Universitaire Européen de la Mer (IUEM)Université de Bretagne Occidentale (UBO), Technopôle Brest-IroisePlouzanéFrance
  2. 2.Service RMN-RPE, UFR Sciences et TechniquesUniversité de Bretagne Occidentale (UBO)BrestFrance

Personalised recommendations