Journal of Applied Phycology

, Volume 29, Issue 3, pp 1115–1122 | Cite as

Microalgal cultivation in porous substrate bioreactor for extracellular polysaccharide production



Netrium digitus is a representative of the species-rich class Zygnematophyceae (Streptophyta). Its intensive extracellular polysaccharide (EPS) production makes this alga interesting for biotechnological applications with a focus on cosmetics and food additives. Quantitative data on growth and EPS production in suspension and, for the first time, in immobilized culture using lab-scale porous substrate bioreactors, so-called Twin-Layer (TL) systems, is presented. It is shown that the cell as well as the EPS dry weight content is increased at least sixfold in immobilized compared to suspension culture. Due to the high amount of EPS, the biofilms reach a thickness of more than 8 mm after 27 days at 70 μmol photons m−2 s−1 and with 1.5% CO2 supply. Frequent exchange of the growth medium results in a linear cell biomass increase of 2.02 ± 0.09 g m−2 growth area day−1 compared to 2.99 ± 0.09 g m−2 day−1, when the medium is not exchanged. Under this mode of cultivation, the EPS production is lower and a final concentration of 12.18 ± 1.25 g m−2 compared to 20.76 ± 0.85 g m−2, when medium was exchanged, is reached. It is clearly demonstrated that the relatively slow growing, but excessively EPS producing, microalgal species N. digitus can be grown in porous substrate bioreactors and that this culturing technique is a promising alternative to suspension culture for the Zygnematophyceae.


Immobilized algal culture Desmids Extracellular polysaccharides Twin-Layer Biofilm 


Author contributions

All authors contributed to this work from the conception to the approval of the final version.


  1. Abdullahi AS, Underwood GJC, Gretz MR (2006) Extracellular matrix assembly in diatoms (Bacillariophyceae). V. Environmental effects on polysaccharide synthesis in the model diatom, Phaeodactylum tricornutum. J Phycol 42:363–378CrossRefGoogle Scholar
  2. Adda M, Merchuk JC, Arad SM (1986) Effect of nitrate on growth and production of cell-wall polysaccharide by the unicellular red alga Porphyridium. Biomass 10:131–140CrossRefGoogle Scholar
  3. Berner F, Heimann K, Sheehan M (2015) Microalgal biofilms for biomass production. J Appl Phycol 27:1793–1804CrossRefGoogle Scholar
  4. Borowitzka MA (2013) High-value products from microalgae—their development and commercialisation. J Appl Phycol 25:743–756CrossRefGoogle Scholar
  5. Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14:557–577CrossRefGoogle Scholar
  6. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306CrossRefPubMedGoogle Scholar
  7. Coesel PFM (1994) On the ecological significance of a cellular mucilaginous envelope in planktic desmids. Algol Stud 73:65–74Google Scholar
  8. Coesel PFM, Wardenaar K (1994) Light-limited growth and photosynthetic characteristics of two planktonic desmid species. Freshw Biol 31:221–226CrossRefGoogle Scholar
  9. da Silva Maria L, de Oliveira da Rocha Franco A, Odebrecht C, Giroldo D, Abreu PC (2016) Carbohydrates produced in batch cultures of the surf zone diatom Asterionellopsis glacialis sensu lato: influence in vertical migration of the microalga and in bacterial abundance. J Exp Mar Biol Ecol 474:126–132CrossRefGoogle Scholar
  10. Dai J, Wu Y, Chen SW, Zhu S, Hp Y, Wang M, Tang J (2010) Sugar compositional determination of polysaccharides from Dunaliella salina by modified RP-HPLC method of precolumn derivatization with 1-phenyl-3-methyl-5-pyrazolone. Carbohydr Polym 82:629–635CrossRefGoogle Scholar
  11. Di Pippo F, Ellwood NTW, Gismondi A, Bruno L, Rossi F, Magni P, De Philippis R (2013) Characterization of exopolysaccharides produced by seven biofilm-forming cyanobacterial strains for biotechnological applications. J Appl Phycol 25:1697–1708CrossRefGoogle Scholar
  12. Domozych DS (2007) Exopolymer production by the green alga Penium margaritanceum: implications for biofilm residency. Int J Plant Sci 168:763–774CrossRefGoogle Scholar
  13. Domozych DS, Kort S, Benton S, Yu T (2005) The extracellular polymeric substance of the green alga Penium margaritaceum and its role in biofilm formation. Biofilms 2:129–144CrossRefGoogle Scholar
  14. Eder M, Lütz-Meindl U (2010) Analyses and localization of pectin-like carbohydrates in cell wall and mucilage of the green alga Netrium digitus. Protoplasma 243:25–38CrossRefPubMedGoogle Scholar
  15. Fattom A, Shilo M (1984) Hydrophobicity as an adhesion mechanism of benthic cyanobacteria. Appl Environ Microbiol 47:135–143PubMedPubMedCentralGoogle Scholar
  16. Fuentes-Grünewald C, Bayliss C, Zanain M, Pooley C, Scolamacchia M, Silkina A (2015) Evaluation of batch and semi-continuous culture of Porphyridium purpureum in a photobioreactor in high latitudes using Fourier transform infrared spectroscopy for monitoring biomass composition and metabolites production. Bioresour Technol 189:357–363CrossRefPubMedGoogle Scholar
  17. Hasegawa S, Baba T, Hori Y (1980) Suppression of allergic contact dermatitis by α-L-fucose. J Invest Dermatol 75:284–287CrossRefPubMedGoogle Scholar
  18. Jiao G, Yu G, Zhang J, Ewart HS (2011) Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Mar Drugs 9:196–223CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kattner E, Lorch D, Weber A (1977) Die Bausteine der Zellwand und der Gallerte eines Stammes von Netrium digitus (Ehrbg.) Itzigs. & Rothe. Mitt Inst Allg Bot Hamburg 15:33–39Google Scholar
  20. Kiemle SN, Domozych DS, Gretz MR (2007) The extracellular polymeric substances of desmids (Conjugatophyceae, Streptophyta): chemistry, structural analyses and implications in wetland biofilms. Phycologia 46:617–627CrossRefGoogle Scholar
  21. Kroen W (1984) Growth and polysaccharide production by the green-alga Chlamydomonas mexicana (Chlorophyceae) on soil. J Phycol 20:616–618CrossRefGoogle Scholar
  22. Li T, Piltz B, Podola B, Dron A, de Beer D, Melkonian M (2016) Microscale profiling of photosynthesis-related variables in a highly productive biofilm photobioreactor. Biotechnol Bioeng 5:1046–1055CrossRefGoogle Scholar
  23. Magaletti E, Urbani R, Sist P, Ferrari CR, Cicero AM (2004) Abundance and chemical characterization of extracellular carbohydrates released by the marine diatom Cylindrotheca fusiformis under N- and P-limitation. Eur J Phycol 39:133–142CrossRefGoogle Scholar
  24. McFadden GI, Melkonian M (1986) Use of HEPES buffer for microalgal culture media and fixation for electron-microscopy. Phycologia 25:551–557CrossRefGoogle Scholar
  25. Milledge JJ (2011) Commercial application of microalgae other than as biofuels: a brief review. Rev Environ Sci Biotechnol 10:31–41CrossRefGoogle Scholar
  26. Mix M (1972) Die Feinstruktur der Zellwände bei Mesotaeniaceae und Gonatozygaceae mit einer vergleichenden Betrachtung der verschiedenen Wandtypen der Conjugatophyceae und über deren systematischen Wert. Arch Mikrobiol 81:197–220CrossRefGoogle Scholar
  27. Mota R, Guimarães R, Büttel Z, Rossi F, Colica G, Silva CJ, Santos C, Gales L, Zille A, De Philippis R, Pereira SB, Tamagnini P (2013) Production and characterization of extracellular carbohydrate polymer from Cyanothece sp. CCY 0110. Carbohydr Polym 92:1408–1415CrossRefPubMedGoogle Scholar
  28. Naumann T, Çebi Z, Podola B, Melkonian M (2013) Growing microalgae as aquaculture feeds on twin-layers: a novel solid-state photobioreactor. J Appl Phycol 25:1413–1420CrossRefGoogle Scholar
  29. Percival E (1979) The polysaccharides of green, red and brown seaweeds: their basic structure, biosynthesis and function. Br Phycol J 14:103–117CrossRefGoogle Scholar
  30. Péterszegi G, Fodil-Bourahla I, Robert A, Robert L (2003) Pharmacological properties of fucose. Applications in age-related modifications of connective tissues. Biomed Pharmacother 57:240–245CrossRefPubMedGoogle Scholar
  31. Pichrtová M, Hájek T, Elster J (2014) Osmotic stress and recovery in field populations of Zygnema sp. (Zygnematophyceae, Streptophyta) on Svalbard (High Arctic) subjected to natural desiccation. FEMS Microbiol Ecol 89:270–280CrossRefPubMedGoogle Scholar
  32. Podola B, Li T, Melkonian M (2016) Porous substrate bioreactors—a paradigm shift in microalgal biotechnology? Trends Biotechnol. doi: 10.1016/j.tibtech.2016.06.004 PubMedGoogle Scholar
  33. Schultze LK, Simon MV, Li T, Langenbach D, Podola B, Melkonian M (2015) High light and carbon dioxide optimize surface productivity in a Twin-Layer biofilm photobioreactor. Algal Res 8:37–44CrossRefGoogle Scholar
  34. Surek B (1983) Mucilage regeneration in the green alga Cosmocladium saxonicum De Bary (Desmidiaceae): a light microscopic and quantitative study. Br Phycol J 18:73–81CrossRefGoogle Scholar
  35. Wijesinghe W, Jeon YJ (2012) Biological activities and potential industrial applications of fucose rich sulfated polysaccharides and fucoidans isolated from brown seaweeds: a review. Carbohydr Polym 88:13–20CrossRefGoogle Scholar
  36. Wolfstein K, Stal LJ (2002) Production of extracellular polymeric substances (EPS) by benthic diatoms: effect of irradiance and temperature. Mar Ecol Prog Ser 236:13–22CrossRefGoogle Scholar
  37. Wustman BA, Gretz MR, Hoagland KD (1997) Extracellular matrix assembly in diatoms (Bacillariophyceae). Plant Physiol 113:1059–1069CrossRefPubMedPubMedCentralGoogle Scholar
  38. Wustman BA, Lind J, Wetherbee R, Gretz MR (1998) Extracellular matrix assembly in diatoms (Bacillariophyceae). III. Organization of fucoglucuronogalactans within the adhesive stalks of Achnanthes longipes. Plant Physiol 116:1431–1441Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.University of CologneKölnGermany

Personalised recommendations