Skip to main content

Advertisement

Log in

A comparison of protein extraction methods optimizing high protein yields from marine algae and cyanobacteria

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Algae are a diverse group of aquatic autotrophs that represent important models for studying morphology, physiology, and molecular biology. Many, because of their adaptation to the marine environment, cell wall composition, and secondary metabolites, present difficulties when trying to extract significant amounts of protein for analyses. In this study, we compared protein extraction methods for 39 different species of marine algae and cyanobacteria. Since successful protein detection requires the liberation of protein from a cell, the goal of the current investigation was to establish a high yield protein extraction method that would allow for protein extraction from different organisms ranging from cyanobacteria, unicellular, multicellular, and coenocytic algae. Six protein extraction assays were tested (three from literature citations and three from commercially available kits). A modification of the technique originally described by Barbarino and Lourenço (J Appl Phycol 17:447–460, 2005) displayed significantly higher yields (p > 0.001, average of 6.7–30.87% dry weight) in all algal and cyanobacterial species examined. Protein yields using this modified procedure were especially successful in the Trebouxiophyceae, Bangiophyceae, Phaeophyceae, and Cyanobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Amarowicz R (2007) Tannins: the new natural antioxidants? Eur J Lipid Sci Tech 109:549–551

    Article  CAS  Google Scholar 

  • Apel K (1977) The light-harvesting chlorophyll a/b· protein complex of the green alga Acetabularia mediterranea isolation and characterization of two subunits. Biochim Biophys Acta -Bioenergetics 462:390–402

    Article  CAS  Google Scholar 

  • Barbarino E, Lourenço S (2005) An evaluation of methods for extraction and quantification of protein from marine macro- and microalgae. J Appl Phycol 17:447–460

    Article  CAS  Google Scholar 

  • Bird KT, Chiles TC, Longley RE, Kendrick AF, Kinkema MD (1993) Agglutinins from marine macroalgae of the southeastern United States. J Appl Phycol 5:213–218

    Article  CAS  Google Scholar 

  • Blunden G, Rogers DJ (1990) Algal lectins. Appl Phycol Forum 7:8–9

    Google Scholar 

  • B-PER Direct Bacterial Protein Extraction Kit (2010) Thermo Scientific, Rockford, IL. http://www.piercenet.com/product/bacterial-nuclear-protein-extraction-kit

  • Capasso R, Izzo AA, Fezza F, Pinto A, Capasso F, Mascolo N, Di Marzo V (2001) Inhibitory effect of palmitoylethanolamide on gastrointestinal motility in mice. Br J Pharmacol 134:945–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dawes CJ, Goddard RH (1978) Chemical composition of the wound plug and entire plants for species of the coenocytic green alga, Caulerpa. J Exp Mar Biol Ecol 35:259–263

    Article  CAS  Google Scholar 

  • Doucha J, Lívanský K (2008) Influence of processing parameters on disintegration of Chlorella cells in various types of homogenizers. Appl Microbiol Biotechnol 81:431–440

    Article  CAS  PubMed  Google Scholar 

  • Doyle RJ (1992) Cell walls of bacteria. In: Lederberg J (ed) Encyclopedia of microbiology, vol. 1. Academic Press, San Diego, pp. 479–493

    Google Scholar 

  • Dreher TW, Grant BR, Wetherbee R (1978) The wound response in the siphonous alga Caulerpa simpliciuscula C. Ag.: fine structure and cytology. Protoplasma 96:189–203

    Article  Google Scholar 

  • Dreher TW, Hawthorne DB, Grant BR (1982) The wound response of the siphonous green algal genus Caulerpa III: composition and origin of the wound plugs. Protoplasma 110:129–137

    Article  CAS  Google Scholar 

  • Duval B, Shetty K, Thomas WH (1999) Phenolic compounds and antioxidant properties in the snow alga Chlamydomonas nivalis after exposure to UV light. J Appl Phycol 11:559–566

    Article  CAS  Google Scholar 

  • Fitton JH (2003) Brown marine algae: a survey of therapeutic potentials. Altern Comp Ther 9:29–33

    Article  Google Scholar 

  • Fleurence J (1999) Seaweed proteins: biochemical, nutritional aspects and potential uses. Trends Food Sci Tech 10:25–28

    Article  CAS  Google Scholar 

  • Fleurence J, Massiani L, Guyader O, Mabeau S (1995) Use of enzymatic cell wall degradation for improvement of protein extraction from Chondrus crispus, Gracilaria verrucosa and Palmaria palmata. J Appl Phycol 7:393–397

    Article  CAS  Google Scholar 

  • Gerde JA, Wang T, Yao L, Jung S, Johnson LA, Lamsal B (2013) Optimizing protein isolation from defatted and non-defatted Nannochloropsis microalgae biomass. Algal Res 2:145–153

    Article  Google Scholar 

  • Goddard RH, Dawes CJ (1983) An ultrastructural and histochemical study of the wound response in the coenocytic green alga Caulerpa ashmaedii (Caulerpales). Protoplasma 114:163–172

    Article  Google Scholar 

  • Halim R, Harun R, Danquah MK, Webley PA (2012) Microalgal cell disruption for biofuel development. Appl Energy 91:116–121

    Article  CAS  Google Scholar 

  • Harnedy PA, Fitzgerald RJ (2013) Extraction of protein from the macroalga Palmaria palmata. LWT Food Sci Technol 51:375–382

    Article  CAS  Google Scholar 

  • Hecky RE, Mopper K, Kilham P, Degens ET (1973) The amino acid and sugar composition of diatom cell-walls. Mar Biol 19:323–331

    Article  CAS  Google Scholar 

  • Hoiczyk E, Hansel A (2000) Cyanobacterial cell walls: news from an unusual prokaryotic envelope. J Bacteriol 182:1191–1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holdt SL, Kraan S (2011) Bioactive compounds in seaweed: functional food applications and legislation. J Appl Phycol 23:543–597

    Article  CAS  Google Scholar 

  • Ireland HE, Harding SJ, Bonwick GA, Jones M, Smith CJ, Williams JH (2004) Evaluation of heat shock protein 70 as a biomarker of environmental stress in Fucus serratus and Lemna minor. Biomarkers 9:139–155

    Article  Google Scholar 

  • Jiménez C, Berl T, Rivard CJ, Edelstein CL, Capasso JM (2004) Phosphorylation of MAP kinase-like proteins mediate the response of the halotolerant alga Dunaliella viridis to hypertonic shock. Biochim Biophys Acta Mol Cell Res 1644:61–69

  • Jordan P, Vilter H (1991) Extraction of proteins from material rich in anionic mucilages: partition and fractionation of vanadate-dependent bromoperoxidases from the brown algae Laminaria digitata and L. saccharina in aqueous polymer two-phase systems. Biochim Biophys Acta Gen Subj 1073:98–106

  • Kaur SJ, Rahman MS, Ammerman NC, Beier-Sexton M, Ceraul SM, Gillespie JJ, Azad AF (2012) TolC-dependent secretion of an ankyrin repeat-containing protein of Rickettsia typhi. J Bact 194:4920–4932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koike S, Ogasawara Y, Shibuya N, Kimura H, Ishii K (2013) Polysulfide exerts a protective effect against cytotoxicity caused by t-buthylhydroperoxide through Nrf2 signaling in neuroblastoma cells. FEBS Lett 587:3548–3555

    Article  CAS  PubMed  Google Scholar 

  • Kotrbáček V, Doubek J, Doucha J (2015) The chlorococcalean alga Chlorella in animal nutrition: a review. J Appl Phycol 27:2173–2180

    Article  Google Scholar 

  • Levi B, Friedlander M (2004) Identification of two putative adhesive polypeptides in Caulerpa prolifera rhizoids using an adhesion model system. J Appl Phycol 16:1–9

    Article  CAS  Google Scholar 

  • Mabeau S, Kloareg B (1987) Isolation and analysis of the cell walls of brown algae: Fucus spiralis, F. ceranoides, F. vesiculosus, F. serratus, Bifurcaria bifurcata and Laminaria digitata. J Exp Bot 38: 1573–1580.

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustainable Energy Rev 14:217–232

    Article  CAS  Google Scholar 

  • Meijer EA, Wijffels RH (1998) Development of a fast, reproducible and effective method for the extraction and quantification of proteins of micro-algae. Biotechnol Tech 12:353–358

    Article  CAS  Google Scholar 

  • Milner HW (1953) Algae as food. Sci Am 189:31–35

    Article  Google Scholar 

  • Moreno J, Vargas M, Madiedo JM, Muñoz J, Rivas J, Guerrero MG (2000) Chemical and rheological properties of an extracellular polysaccharide produced by the cyanobacterium Anabaena sp. ATCC 33047. Biotechnol Bioeng 67:283–290

    Article  CAS  PubMed  Google Scholar 

  • Mouritsen OG (2016) Those tasty weeds. J Appl Phycol. doi:10.1007/s10811-016-0986-1

    Google Scholar 

  • Nakakuki M, Kawano H, Notsu T, Imada K, Mizuguchi K, Shimano H (2014) A novel processing system of sterol regulatory element-binding protein-1c regulated by polyunsaturated fatty acid. J Biochem 155:301–313

    Article  CAS  PubMed  Google Scholar 

  • NE-PER nuclear and cytoplasmic extraction reagents (2008) Thermo Scientific, Rockford, IL. http://www.piercenet.com/product/ne-per-nuclear-protein-extraction-kit

  • Parages ML, Capasso JM, Meco V, Jimenez C (2012) A novel method for phosphoprotein extraction from macroalgae. Bot Mar 55:261–267

    Article  CAS  Google Scholar 

  • Plaza M, Cifuentes A, Ibáñez E (2008) In the search of new functional food ingredients from algae. Trends Food Sci Technol 19:31–39

    Article  CAS  Google Scholar 

  • P-PER plant protein extraction kit (2010) Thermo Scientific, Rockford, IL. http://www.piercenet.com/product/p-per-plant-protein-extraction-reagent

  • Rosenberg, I. M. (1996). Getting started with protein purification. In: Protein Analysis and Purification, Birkhäuser Boston, pp. 99–133

  • Ryckebosch E, Muylaert K, Foubert I (2012) Optimization of an analytical procedure for extraction of lipids from microalgae. J Am Oil Chem Soc 89:189–198

    Article  CAS  Google Scholar 

  • Safi C, Ursu AV, Laroche C (2014) Aqueous extraction of proteins from microalgae: effect of different cell disruption methods. Algal Res 3:61–65

    Article  Google Scholar 

  • Slocombe SP, Ross M, Thomas N, McNeil S, Stanley MS (2013) A rapid and general method for measurement of protein in microalgal biomass. Bioresource Technol 129:51–57

    Article  CAS  Google Scholar 

  • Steinberg PD (1984) Algal chemical defense against herbivores: allocation of phenolic compounds in the kelp Alaria marginata. Science 223:405–407

    Article  CAS  PubMed  Google Scholar 

  • Tønnesen HH, Karlsen J (2002) Alginate in drug delivery systems. Drug Dev Indust Pharm 28:621–630

    Article  Google Scholar 

  • Walker CW, Low BE, Böttger SA (2012) Mortalin in invertebrates and the induction of apoptosis by wild-type p53 following defeat of mortalin-based cytoplasmic sequestration in cancerous clam hemocytes. In: Kaul SC, Wadhwa R (eds) Mortalin biology: life, stress and death. Springer, Dordrecht, pp. 97–113

    Chapter  Google Scholar 

  • Wojtaszek PA, Heasley LE, Siriwardana G, Berl T (1998) Dominant-negative c-Jun NH2-terminal kinase 2 sensitizes renal inner medullary collecting duct cells to hypertonicity-induced lethality independent of organic osmolyte transport. J Biol Chem 273:800–804

    Article  CAS  PubMed  Google Scholar 

  • Wu ZC, Liu Y, Dong WH, Sun SY, Zhu GQ, Wu SL, Bao WB (2015) Identification of BPI protein produced in different expression system and its association with Escherichia coli F18 susceptibility. Genet Mol Res 14:1111–1123

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Cardinal JS, Bahar R, Evankovich J, Huang H, Nace G, Tsung A (2012) Interferon regulatory factor-1 regulates the autophagic response in LPS-stimulated macrophages through nitric oxide. Mol Med 18:201–208

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank West Chester University of Pennsylvania for the financial support of this project through a College of Arts and Sciences Faculty Development Award and a Biology Cullen-Triano Award to SAB. We would also like to thank the Chincoteague Bay Field Station and Dr. Sean Cornell (Shippensburg University of Pennsylvania) for their help with algal collections and Dr. Clinton Dawes, University of South Florida Tampa, Florida, for the help with algal taxonomy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Anne Böttger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Field, L.M., Fagerberg, W.R., Gatto, K.K. et al. A comparison of protein extraction methods optimizing high protein yields from marine algae and cyanobacteria. J Appl Phycol 29, 1271–1278 (2017). https://doi.org/10.1007/s10811-016-1027-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-016-1027-9

Keywords