Nutrient removal by biomass accumulation on artificial substrata in the northern Baltic Sea

Abstract

We studied the potential of utilizing non-seeded artificial substrata in growing macrofauna and macroalgae to remove excess nutrients from seawater in the northern Baltic Sea. Succession, species composition, and biomass on two different substratum types were studied. Organic carbon (C), nitrogen (N), and phosphorus (P) as well as heavy metal (As, Cd, Cu, Pb, and Zn) contents were measured from the algal species and the invertebrate fraction. The invertebrate fraction formed more than 94% of the total biomass and consisted of blue mussels (Mytilus trossulus), bay barnacles (Amphibalanus improvisus), and hydroids (Cordylophora caspia and Gonothyraea loveni). Major algal species consisted of green algae Ulva spp. and Cladophora glomerata, red algae Ceramium tenuicorne and Polysiphonia fibrillosa, and filamentous brown algae Pylaiella littoralis and Ectocarpus siliculosus. The highest biomasses were measured at the end of the experiment, after 14.5 months of exposure in the sea, when the total biomass was on average 2.4 kg dry weight (DW) m−2 substratum, containing approximately 50 g N and 5 g P. The heavy metal concentrations were site and species dependent and on average lower in the invertebrate fraction compared with the macroalgal fraction. In some cases especially, Cd may limit biomass use as fertilizers. According to these results, annual N and P emissions from small-sized point sources could be reduced by using artificial substrata to remove sessile organisms, but this would require extensive cultivations. Furthermore, the utilization of the marine macroalgal and invertebrate biomass in biogas production requires adding more carbon-rich feedstock to obtain optimal results.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Ahmed N, Glacer M (2016) Can “integrated multi-trophic aquaculture (IMTA)” adapt to climate change in coastal Bangladesh? Ocean Coast Manage 132:120–131

    Article  Google Scholar 

  2. Berezina NA, Golubkov SM (2008) Effect of drifting macroalgae Cladophora glomerata on benthic community dynamics in the easternmost Baltic Sea. J Mar Syst 74:S80–S85

  3. Bergström L, Bergström U (1999) Species diversity and distribution of aquatic macrophytes in the Northern Quark, Baltic Sea. Nord J Bot 19:375–383

    Article  Google Scholar 

  4. Bruhn A, Dahl J, Nielsen HB, Nikolaisen L, Rasmussen MB, Markager S, Olesen B, Arias C, Jensen PD (2011) Bioenergy potential of Ulva lactuca: biomass yield, methane production and combustion. Biores Tech 102:2595–2604

    CAS  Article  Google Scholar 

  5. Brown MT, Depledge MH (1998) Determinants of trace metal concentrations in marine organisms. In: Langston W, Bebianno MJ (eds) Metal metabolism in aquatic environments. Chapman & Hall, London, pp 185–217

    Google Scholar 

  6. Bucholc K, Szymczak-Źyła M, Lubecki L, Zamojska A, Hapter P, Tjernström E, Kowalewska G (2014) Nutrient content in macrophyta collected from southern Baltic Sea beaches in relation to eutrophication and biogas production. Sci Total Environ 473–474:298–307

    Article  PubMed  Google Scholar 

  7. Carrilho ENVM, Gilbert TR (2000) Assessing metal sorption on the marine alga Pilayella littoralis. J Environ Monit 2:410–415

  8. Cederwall H, Elmgren R (1990) Biological effects of eutrophication in the Baltic Sea, particularly the coastal zone. Ambio 19:109–111

    Google Scholar 

  9. Chan SM, Wang W-X, Ni I-H (2003) The uptake of Cd, Cr, and Zn by the macroalga Enteromorpha crinita and subsequent transfer to the marine herbivorous Rabbitfish, Siganus canaliculatus. Arch Environ Contam Toxicol 44:298–306

    CAS  Article  PubMed  Google Scholar 

  10. Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Tech 99:4044–4064

    CAS  Article  Google Scholar 

  11. Chmielewská E, Medved’ J (2001) Bioaccumulation of heavy metals by green algae Cladophora glomerata in a refinery sewage lagoon. Croat Chem Acta 74:135–145

  12. Cranford PJ, Reid GK, Robinson SMC (2013) Open water integrated multi-trophic aquaculture: constraints on the effectiveness of mussels as an organic extractive component. Aquacult Env Interact 4:163–173

  13. Cubillo AM, Ferreira JG, Robinson SMC, Pearce CM, Corner RA, Johansen J (2016) Role of deposit feeders in integrated multi-trophic aquaculture—a model analysis. Aquaculture 453:54–66

    Article  Google Scholar 

  14. Davis TA, Volesky B, Mucci A (2003) A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 37:4311–4330

    CAS  Article  PubMed  Google Scholar 

  15. Dubrovskis V, Plume I, Kazulis V, Celms A, Kotelenecs V, Zabarovskis E (2012) Biogas production potential from agricultural biomass and organic residues in Latvia. In: Malinovska L, Osadcuks V (eds) 11th International Scientific Conference – Engineering for Rural Development Proceedings, vol. 11. Latvia University of Agriculture, Faculty of Engineering, pp 566–571. http://tf.llu.lv/conference/proceedings2012/; searched on 16 November 2015

  16. Eklöf JS, de la Torre CM, Adelsköld L, Jiddawi NS, Kautsky N (2005) Differences in macrofaunal and seagrass assemblages in seagrass beds with and without seaweed farms. Estuar Coast Shelf Sci 63:385–396

    Article  Google Scholar 

  17. European Union (2008) Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive). http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32008L0056 searched on 10 June 2016

  18. Filipkowska A, Lubecki L, Szymczak-Żyła M, Kowalewska G, Żbikowski R, Szefer P (2008) Utilisation of macroalgae from the Sopot beach (Baltic Sea). Oceanologia 50:255–273

    Google Scholar 

  19. Gao K, McKinley KR (1994) Use of macroalgae for marine biomass production and CO2 remediation: a review. J Appl Phycol 6:45–60

    Article  Google Scholar 

  20. Grasshoff K, Erhardt M, Kremling K (eds) (1983) Methods of seawater analysis. Verlag Chemie, Weinheim, pp. 125–187

    Google Scholar 

  21. Grote B (2016) Bioremediation of aquaculture wastewater: evaluating the prospects of the red alga Palmaria palmata (Rhodophyta) for nitrogen uptake. J Appl Phycol 28:3075–3082

    CAS  Article  Google Scholar 

  22. Grünewald N, Groth I, Alban S (2009) Evaluation of seasonal variations of the structure and anti-inflammatory activity of sulfated polysaccharides extracted from the red alga Delesseria sanguinea (Hudson) Lamouroux (Ceramiales, Delesseriaceae). Biomacromolecules 10:1155–1162

    Article  PubMed  Google Scholar 

  23. Gubelit YI (2009) Biomass and primary production of Cladophora glomerata (L.) Kütz. in the Neva estuary. Inland Water Biol 2:300–304

    Article  Google Scholar 

  24. Gubelit YI, Berezina NA (2010) The causes and consequences of algal blooms: the Cladophora glomerata bloom and the Neva estuary (eastern Baltic Sea). Mar Pollut Bull 61:183–188

    CAS  Article  PubMed  Google Scholar 

  25. Hadley S, Wild-Allen K, Johnson C, Macleod C (2015) Modeling macroalgae growth and nutrient dynamics for integrated multi-trophic aquaculture. J Appl Phycol 27:901–916

    Article  Google Scholar 

  26. He P, Xu S, Zhang H, Wen S, Dai Y, Lin S, Yarish C (2008) Bioremediation efficiency in the removal of dissolved inorganic nutrients by the red seaweed, Porphyra yezoensis, cultivated in the open sea. Water Res 42:1281–1289

    CAS  Article  PubMed  Google Scholar 

  27. HELCOM (2009) Eutrophication in the Baltic Sea—an integrated thematic assessment of the effects of nutrient enrichment and eutrophication in the Baltic Sea region. Balt Sea Environ Proc, No. 115B

  28. Hjerne O, Hansson S (2002) The role of fish and fisheries in Baltic Sea nutrient dynamics. Limnol Oceanogr 47:1023–1032

    Article  Google Scholar 

  29. Huo YZ, Xu SN, Wang YY, Zhang JH, Zhang YJ, Wu WN, Chen YQ, He PM (2011) Bioremediation efficiencies of Gracilaria verrucosa cultivated in an enclosed sea area of Hangzhou Bay, China. J Appl Phycol 23:173–182

    Article  Google Scholar 

  30. ISO 17294-2 (2003) Water quality—application of inductively coupled plasma mass spectrometry (ICP-MS)—part 2: determination of 62 elements

  31. Jones AB, Dennison WC, Preston NP (2001) Integrated treatment of shrimp effluent by sedimentation, oyster filtration and macroalgal absorption: a laboratory scale study. Aquaculture 193:155–178

    Article  Google Scholar 

  32. Jung KA, Lim S-R, Kim Y, Park JM (2013) Potentials of macroalgae as feedstocks for biorefinery. Bioresour Tech 135:182–190

    CAS  Article  Google Scholar 

  33. Kangas P, Autio H (1986) Macroalgae as indicators of heavy metal pollution. Publications of the Water Research Institute. National Board of Waters, Helsinki, No. 68

  34. Kersen P (2013) Red seaweeds Furcellaria lumbricalis and Coccotylus truncatus: community structure, dynamics and growth in the northern Baltic Sea. Dissertation, Tallinn University, Estonia 127 pp

  35. Kiirikki M, Lehvo A (1997) Life strategies of filamentous algae in the northern Baltic proper. Sarsia 82:259–267

    Article  Google Scholar 

  36. Korzen L, Abelson A, Israel A (2016) Growth, protein and carbohydrate contents in Ulva rigida and Gracilaria bursa-pastoris integrated with an offshore fish farm. J Appl Phycol 28:1835–1845

    CAS  Article  Google Scholar 

  37. Kraufvelin P, Ruuskanen AT, Nappu N, Kiirikki M (2007) Winter colonisation and succession of filamentous macroalgae on artificial substrates and possible relationships to Fucus vesiculosus in early summer. Estuar Coast Shelf Sci 72:665–674

    Article  Google Scholar 

  38. Kumari R, Kaur I, Bhatnagar AK (2013) Enhancing soil health and productivity of Lycopersicon esculentum Mill. using Sargassum johnstonii Setchell & Gardner as a soil conditioner and fertilizer. J Appl Phycol 25:1225–1235

    CAS  Article  Google Scholar 

  39. Lehvo A, Bäck S (2001) Survey of macroalgal mats in the Gulf of Finland, Baltic Sea. Aquatic Conserv: Mar Freshw Ecosyst 11:11–18

    Article  Google Scholar 

  40. Leskinen E (1984) Colonization of periphytic organisms on artificial substrata on the southwestern coast of Finland. Ophelia Suppl 3:137–146

    Google Scholar 

  41. Lindahl O, Kollberg S (2008) How mussels can improve coastal water quality. Mussel farming—a way to combat eutrophication. Bioscience Explained 5:1–14.

  42. Lundberg C, Lönnroth M, von Numers M, Bonsdorff E (2005) A multivariate assessment of coastal eutrophication. Examples from the Gulf of Finland, northern Baltic Sea. Mar Pollut Bull 50:1185–1196

    CAS  Article  PubMed  Google Scholar 

  43. MAA- Ja Metsätalousministeriö (2011) Asetus nro 24/11. http://www.finlex.fi/data/normit/37638-11024fi.pdf. Accessed 10 June 2016

  44. Maar M, Saurel C, Landes A, Dolmer P, Petersen JK (2015) Growth potential of blue mussels (M. edulis) exposed to different salinities evaluated by a dynamic energy budget model. J Marine Syst 148:48–55

    Article  Google Scholar 

  45. Martin G, Paalme T, Torn K (2006) Seasonality pattern of biomass accumulation in a drifting Furcellaria lumbricalis community in the waters of the West Estonian Archipelago, Baltic Sea. J Appl Phycol 18:557–563

    Article  Google Scholar 

  46. Mavi (2016) http://www.mavi.fi/fi/tuet-ja-palvelut/viljelija/Sivut/lannoitus.aspx. Accessed 21 June 2016

  47. Mouritsen OG, Dawczynski C, Duelund L, Jahreis G, Vetter W, Schröder M (2013) On the human consumption of the red seaweed dulse (Palmaria palmata (L.) Weber & Mohr). J Appl Phycol 25:1777–1791

    CAS  Article  Google Scholar 

  48. Murphy AE, Anderson IC, Luckenbach MW (2015) Enhanced nutrient regeneration at commercial hard clam (Mercenaria mercenaria) beds and the role of macroalgae. Mar Ecol Prog Ser 530:135–151

    CAS  Article  Google Scholar 

  49. Mäkinen T (ed) (2008) Fishery as a preventive action against the nutrient loading from fish farming: fish farming net loading system, a preliminary study. Riista- ja kalatalous – Selvityksiä 2/2008. Finnish Game and Fisheries Research Institute, Helsinki

  50. Neushul M, Benson J, Harger BWW, Charters AC (1992) Macroalgal farming in the sea: water motion and nitrate uptake. J Appl Phycol 4:255–265

    Article  Google Scholar 

  51. Nielsen MM, Bruhn A, Rasmussen MB, Olesen B, Larsen MM, Møller HB (2012) Cultivation of Ulva lactuca with manure for simultaneous bioremediation and biomass production. J Appl Phycol 3:449–458

    Article  Google Scholar 

  52. Nóbrega JA, Pirola C, Fialho LL, Rota G, de Campos Jordão CEKMA, Pollo F (2012) Microwave-assisted digestion of organic samples: how simple can it become? Talanta 98:272–276

    Article  PubMed  Google Scholar 

  53. Nkemka VN, Murto M (2010) Evaluation of biogas production from seaweed in batch tests and in UASB reactors combined with the removal of heavy metals. J Environ Manag 91:1573–1579

    CAS  Article  Google Scholar 

  54. Nkemka VN, Murto M (2012) Exploring strategies for seaweed hydrolysis: effect on methane potential and heavy metal mobilization. Process Biochem 47:2523–2526

    CAS  Article  Google Scholar 

  55. Patel S (2012) Therapeutic importance of sulfated polysaccharides from seaweeds: updating the recent findings. 3 Biotech 2:171–185

    Article  PubMed Central  Google Scholar 

  56. Pedersen MF, Borum J (1997) Nutrient control of estuarine macroalgae: growth strategy and the balance between nitrogen requirements and uptake. Mar Ecol Prog Ser 161:155–163

    Article  Google Scholar 

  57. Pérez-Camacho A, Labarta U, Vinseiro V, Fernández-Reiriz MJ (2013) Mussel production management: raft culture without thinning-out. Aquaculture 406–407:172–179

    Article  Google Scholar 

  58. Peu P, Sassi J-F, Girault R, Picard S, Saint-Cast P, Béline F, Dabert P (2011) Sulphur fate and anaerobic biodegradation potential during co-digestion of seaweed biomass (Ulva sp.) with pig slurry. Biores Technol 102:10794–10802

  59. Protasowicki M, Dural M, Jaremek J (2008) Trace metals in the shells of blue mussels (Mytilus edulis) from the Poland coast of Baltic Sea. Environ Monit Assess 141:329–337

    CAS  Article  PubMed  Google Scholar 

  60. Rebours C, Marinho-Soriano E, Zertuche-González JA, Hayashi L, Vásquez JA, Kradolfer P, Soriano G, Ugarte R, Abreu MH, Bay-Larsen I, Hovelsrud G, Rødven R, Robledo D (2014) Seaweeds: an opportunity for wealth and sustainable livelihood for coastal communities. J Appl Phycol 26:1939–1951

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. Reddy CRK, Jha B, Fujita Y, Ohno M (2008) Seaweed micropropagation techniques and their potentials: an overview. J Appl Phycol 20:609–617

    Article  Google Scholar 

  62. Reid GK, Liutkus M, Bennett A, Robinson SMC, MacDonald B, Page F (2010) Absorption efficiency of blue mussels (Mytilus edulis and M. trossulus) feeding on Atlantic salmon (Salmo salar) feed and fecal particulates: implications for integrated multi-trophic aquaculture. Aquaculture 299:165–169

    Article  Google Scholar 

  63. Richardson CA, Chenery SRN, Cook JM (2001) Assessing the history of trace metal (Cu, Zn, Pb) contamination in the North Sea through laser ablation—ICP-MS of horse mussel Modiolus modiolus shells. Mar Ecol Prog Ser 211:157–167

    CAS  Article  Google Scholar 

  64. Risén E, Tatarchenko O, Gröndahl F, Malmström ME (2014) Harvesting of drifting filamentous macroalgae in the Baltic Sea: an energy assessment. J Renew Sust Energy 6(1):013116

    Article  Google Scholar 

  65. Riekie GJ, Williams PN, Raab A, Meharg AA (2006) The potential for kelp manufacture to lead to arsenic pollution of remote Scottish islands. Chemosphere 65:332–342

    CAS  Article  PubMed  Google Scholar 

  66. Roesijadi G, Jones SB, Snowden-Swan LJ, Zhu Y (2010) Macroalgae as a biomass feedstock: a preliminary analysis. The U.S. Department of Energy, Pacific Northwest National Laboratory, PNNL-19944, Richland, Washington

    Google Scholar 

  67. Roos C, Rönnberg O, Berglund J, Alm A (2004) Long-term changes in macroalgal communities along ferry routes in a northern Baltic archipelago. Nord J Bot 23:247–259

    Article  Google Scholar 

  68. Rößner Y, Krost P, Schulz C (2014) Increasing seaweed crop yields through organic fertilisation at the nursery stage. J Appl Phycol 26:753–762

    Article  Google Scholar 

  69. Salovius S, Kraufvelin P (2004) The filamentous green alga Cladophora glomerata as a habitat for littoral macro-fauna in the northern Baltic Sea. Ophelia 58:65–78

    Article  Google Scholar 

  70. Seghetta M, Østergård H, Bastianoni S (2014) Energy analysis of using macroalgae from eutrophic waters as a bioethanol feedstock. Ecol Model 288:25–37

    Article  Google Scholar 

  71. Shahbazi F, Seyyed Nejad M, Salimi A, Gilani A (2015) Effect of seaweed extracts on the growth and biochemical constituents of wheat. Intl J Agri Crop Sci 8:283–287

    CAS  Google Scholar 

  72. Sheng PX, Ting Y-P, Chen JP, Hong L (2004) Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms. J Colloid Interface Sci 275:131–141

    CAS  Article  PubMed  Google Scholar 

  73. Solorzano L, Sharp JH (1980) Determination of total dissolved phosphorus and particulate phosphorus in natural waters. Limnol Oceanogr 25:754–758

    CAS  Article  Google Scholar 

  74. Suutari M, Leskinen E, Fagerstedt K, Kuparinen J, Kuuppo P, Blomster J (2015) Macroalgae in biofuel production. Phycol Res 63:1–18

    CAS  Article  Google Scholar 

  75. USEPA (2007) METHOD 3051A. Microwave assisted acid digestion of sediments, sludges, soils, and oils. Revision 1, February 2007. https://www.epa.gov/hw-sw846/sw-846-test-method-3051a-microwave-assisted-acid-digestion-sediments-sludges-soils-and-oils; searched on 15 May 2016

  76. Vahteri P, Mäkinen A, Salovius S, Vuorinen I (2000) Are drifting algal mats conquering the bottom of the Archipelago Sea, SW Finland? Ambio 29:338–343

    Article  Google Scholar 

  77. Vallius H, Leivuori M (1999) The distribution of heavy metals and arsenic in recent sediments in the Gulf of Finland. Boreal Env Res 4:19–29

    CAS  Google Scholar 

  78. Voigt H-R (2007) Heavy metal concentrations in four-horn sculpin Triglopsis quadricornis (L.) (Pisces), its main food organism Saduria entomon L. (Crustacea), and in bottom sediments in the Archipelago Sea and the Gulf of Finland (Baltic Sea). Proc Estonian Acad Sci Biol Ecol 56:224–238

    Google Scholar 

  79. Wallin M, Håkanson L, Persson J (1992) Load models for nutrients in coastal areas, especially from fish farms. Nordiska ministerrådet, Copenhagen 207 pp (in Swedish with English summary)

    Google Scholar 

  80. Weldrick CK, Jelinski DE (2016) Resource subsidies from multi-trophic aquaculture affect isotopic niche width in wild blue mussels (Mytilus edulis). J Marine Syst 157:118–123

    Article  Google Scholar 

  81. Wu C, Li D, Liu H, Peng G, Liu J (2004) Mass culture of Undaria gametophyte clones and their use in sporeling culture. Hydrobiologia 512:153–156

    Article  Google Scholar 

  82. Wulff C, Humborg C, Andersen HE, Blicher-Mathiesen G, Czajkowski M, Elofsson K, Fonnesbech-Wulff A, Hasler B, Hong B, Jansons V, Mörth C-M, Smart JCR, Smedberg E, Stålnacke P, Swaney DP, Thodsen H, Was A, Żylicz T (2014) Reduction of Baltic Sea nutrient inputs and allocation of abatement costs within the Baltic Sea catchment. Ambio 43:11–25

    Article  PubMed  PubMed Central  Google Scholar 

  83. Xu B, Zhang QS, Qu SC, Cong YZ, Tang XX (2009) Introduction of a seedling production method using vegetative gametophytes to the commercial farming of Laminaria in China. J Appl Phycol 21:171–178

    Article  Google Scholar 

  84. Zhou Y, Yang H, Hu H, Liu Y, Mao Y, Zhou H, Xu X, Zhang F (2006) Bioremediation potential of the macroalga Gracilaria lemaneiformis (Rhodophyta) integrated into fed fish culture in coastal waters of North China. Aquaculture 252:264

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by European Regional Development Fund through the Baltic Sea Region Programme 2007-13 project “Sustainable Uses of Baltic Marine Resources, SUBMARINER,” The Foundation for Research of Natural Resources in Finland, and Maa- ja vesitekniikan tuki ry. We thank T. Sara-Aho for the metal analysis; J. Saren, J. Koistinen, E. Nikkola, and M. Sjöblom for the nutrient analysis and other laboratory services; A. Ruuskanen, L. Järvinen, V. Kinnunen, and G. Lundberg for the assistance with installations; and B. Regmi, B. Dulal, T. Saarinen, E. Salo, T. Hastings, H. Kauko, J. Enqvist, K. Yordanov, T. Hämäläinen, and M. Issakainen for the assistance during field and laboratory work. Our sincere thanks for cooperation are due to S. Airaksinen and O. Norrdahl at the Finnish Game and Fisheries Institute. M. Riittonen kindly allowed us to use his boat and helped with the installation of the experiment.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Milla Suutari.

Electronic supplementary material

Online Resource 1

Installation in Rymättylä the 13th of June 2012 (PDF 108 kb)

Online Resource 2

Substrata from biomass line the 20th of June 2012. Substrata have been in water since May 2011. Up left and right: Net substratum in water and the same substratum lifted out from the water. Lower picture presents rope substrata (PDF 183 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Suutari, M., Leskinen, E., Spilling, K. et al. Nutrient removal by biomass accumulation on artificial substrata in the northern Baltic Sea. J Appl Phycol 29, 1707–1720 (2017). https://doi.org/10.1007/s10811-016-1023-0

Download citation

Keywords

  • Macroalgae
  • Invertebrates
  • Bioremediation
  • Eutrophication
  • Nutrient and heavy metal content
  • Baltic Sea