Journal of Applied Phycology

, Volume 29, Issue 3, pp 1409–1420 | Cite as

Ongrowing and enhancement of n-3 HUFA profile in adult Artemia: short- vs long-time enrichment

  • Miquel PlanasEmail author
  • Catarina Silva
  • Patricia Quintas
  • Alexandro Chamorro
  • Sonia Piñero


The use of adult Artemia is uncommon in aquaculture and limited to feeding adults of species not accepting inert diets. The aim of the present study was the development of a standardized technique for adult Artemia production in small volumes (25–100 L), and the assessment of ongrowing and enrichment diets for enhancement of n-3 highly unsaturated fatty acid (HUFA) content. We firstly assessed the effect of initial nauplii density (1, 2, and 3 nauplii mL−1) and food dose (x1, x2, and x3 quantities of mixed Tisochrysis lutea, Spirulina, and Prolon) for production of Artemia. Intermediate nauplii densities and food doses yielded the best overall results (44–46% survival; 5.6–5.9-mm length; 365–456 μg Artemia −1). Secondly, four diets (mixtures of Tisochrysis lutea, Phaeodactylum tricornutum, Spirulina sp., Prolon, and Red Pepper) were tested for ongrowing. Ten short-time enrichments (STEs; 30 h) and a long-time enrichment (LTE; 9 days) were also assayed for n-3 HUFA (Highly unsaturated fatty acids) enhancement. The improvement in n-3 HUFA was rather limited in STE. However, LTE on a mixture of P. tricornutum, Prolon, and Red Pepper (regardless of further STE) in ongrowing Artemia yielded the highest contents in total fatty acids and in 20:4n-6 20:5n-3, 22:5n-3, and 22:6n-3. The quality of LTE Artemia was based on an equilibrated dietary source of protein (Spirulina), 20:5n-3 (P. tricornutum), and 22:6n-3 (Red Pepper). STE Artemia had a quality similar or even higher than that of captured zooplankton, and its use in our laboratory for the feeding of seahorses significantly enhanced breeding and newborn quality.


Artemia Ongrowing Microalgae Enrichment Fatty acids HUFA Seahorse 



This study has received funding by the Spanish Ministry Of Science And Technology (Proyecto Hippocampus; CGL2005-05927-C03-01) and the Regional Government of Galicia (Xunta de Galicia; PGIDIT06PXIC402106PN). P. Quintas was supported by a postdoctoral JAE-Doc/JAE-PhD contract from the Spanish Council for Scientific Research (CSIC), co-financed by the European Social Fund, and C. Silva was granted an Erasmus scholarship (Erasmus 29154-IC-1-2007-1-PT-ERASMUS-EUC-1). We are grateful to Bridie Kennerley, Alexandra Mundy (language review), Lourdes Nieto (preparation of microalgae), and María Jesús González and Isabel Medina (fatty acid analyses of microalgae).


  1. Anderson AJ, Arthington AH, Anderson S (1990) Lipid classes and fatty acid composition of the eggs of some Australian fish. Comp Biochem Physiol 96B:267–270Google Scholar
  2. Anh NTN, Ut VN, Wille M, Hoa NV, Sorgeloos P (2011) Effect of different forms of Artemia biomass as a food source on survival, molting and growth rate of mud crab (Scylla paramamosain). Aquac Nutr 17:e549–e558CrossRefGoogle Scholar
  3. Bendif EM, Probert I, Schroeder DC, Vargas C (2013) On the description of Tisochrysis lutea gen. nov. sp. nov. and Isochrysis nuda sp. nov. in the Isochrysidales, and the transfer of Dicrateria to the Prymnesiales (Haptophyta). J Appl Phycol 25:1763–1776CrossRefGoogle Scholar
  4. Bengtson DA, Léger P, Sorgeloos P (1991) Use of Artemia as a food source for aquaculture. In: Browne RA, Sorgeloos P, Trotman CNA (eds) Artemia biology. CRC Press, Boca Raton, pp. 255–285Google Scholar
  5. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917CrossRefPubMedGoogle Scholar
  6. Bruce M, Oyen F, Bell G, Asturiano JF, Farndale B, Carrillo M, Zanui S, Ramos J, Bromage N (1999) Development of broodstock diets for the European sea bass with special emphasis on the importance of n−3 and n−6 highly unsaturated fatty acids to reproductive performance. Aquaculture 177:85–97CrossRefGoogle Scholar
  7. Christie WW (1982) Lipid analysis. Pergamon Press, Oxford, pp. 52–53Google Scholar
  8. Ciferri O (1983) Spirulina, the edible microorganism. Microbiol Rev 47:551–578PubMedPubMedCentralGoogle Scholar
  9. Cohen Z, Vonshak A, Richmond A (1987) Fatty acid composition of Spirulina strains grown undervarious environmental conditions. Phytochemistry 26:2255–2258CrossRefGoogle Scholar
  10. Dhont J, Lavens P (1996) Tank production and use of ongrown Artemia. In Lavens P, Sorgeloos (eds). Manual on the production and use of live food for aquaculture. FAO Fisheries Technical Paper 361, FAO, Rome, pp. 164–194Google Scholar
  11. Dhont J, Lavens P, Sorgeloos P (1993) Preparation and use of Artemia as food for shrimp and prawn larvae. In: McKey JP (ed) CRC handbook of mariculture, Crustacean Aquaculture, vol 1. CRC Press, Inc., Boca Raton, pp. 61–93Google Scholar
  12. Espinosa-Fuentes A, Ortega-Salas A, Laguarda-Figueras A (1997) Two experimental assays to produce biomass of Artemia franciscana (Anostraca). Rev Biol Trop 44:565–572Google Scholar
  13. Furuita H, Hori K, Suzuki ST, Yamamoto T (2007) Effect of n-3 and n-6 fatty acids in broodstock diet on reproduction reproduction and fatty acid composition of broodstock and eggs in the Japanese eel Anguilla japonica. Aquaculture 267:55–61CrossRefGoogle Scholar
  14. Herbes S, Allen C (1983) Lipid quantification of freshwater invertebrates: method modification for microquantitation. Can J Fish Aquat Sci 40:1315–1317CrossRefGoogle Scholar
  15. Kanazawa A, Teshima S, Ono K (1979) Relationship between essential fatty acid requirements of aquatic animals and the capacity for bioconversion of linolenic acid to highly unsaturated fatty acids. Comp Biochem Physiol B 63:295–298CrossRefPubMedGoogle Scholar
  16. Lavens P, Sorgeloos P (2000) The history, present status and prospects of the availability of Artemia cysts for aquaculture. Aquaculture 181:397–403CrossRefGoogle Scholar
  17. Léger P, Bengtson DA, Simpson KL, Sorgeloos P (1986) The use and nutritional value of Artemia as a food source. Oceanogr Mar Biol Ann Rev 24:521–623Google Scholar
  18. Léger P, Naessens-Foucquaert E, Sorgeloos P (1987) International study on Artemia XXXV. Techniques to manipulate the fatty acid profile in Artemia nauplii and the effect on its nutritional effectiveness for the marine crustacean Mysidopsis bahia (M). In: Sorgeloos P, Bengtson DA, Decleir W, Jaspers E (eds) Artemia research and its applications, vol. 3. Ecology, culturing, use in aquaculture. Universa Press, Wetteren, pp. 411–424Google Scholar
  19. Lepage G, Roy C (1986) Direct transesterification of cell classes of lipids in a one step reaction. J Lipid Res 27:114–120PubMedGoogle Scholar
  20. Lim LC, Soh A, Dhert P, Sorgeloos P (2008) Production and application of on-grown Artemia in freshwater ornamental fish farm. Aquac Eco Manag 5:211–228CrossRefGoogle Scholar
  21. Lubián LM, Yúfera M (1989) Colección de cepas de microal-gas marinas del Instituto de Ciencias de Andalucia (CSIC). In: Yúfera M (ed) Acuiculturura Internameal. Consejo Superior de lnvestigariones cientificas, Cádiz, pp. 66–78Google Scholar
  22. Maldonado-Montiel TD, Rodríguez-Canché LG (2005) Biomass production and nutritional value of Artemia sp. (Anostraca: Artemiidae) in Campeche. México Rev Biol Trop 53:447–454CrossRefPubMedGoogle Scholar
  23. Mazorra C, Bruce M, Bell JG, Davie A, Alorend E, Jordan N, Rees J, Papanikos N, Porter M, Bromage N (2003) Dietary lipid enhancement of broodstock reproductive performance and egg and larval quality in Atlantic halibut (Hippoglossus hippoglossus). Aquaculture 227:21–33CrossRefGoogle Scholar
  24. Navarro JC, Henderson RJ, McEvoy LA, Bell MV, Amat F (1999) Lipid conversions during enrichment of Artemia. Aquaculture 174:155–166CrossRefGoogle Scholar
  25. Olivotto I, Planas M, Simões N, Holt GJ, Avella MA, Calado R (2011) Advances in beeding and rearing marine ornamentals. J World Aquacult Soc 42:135–166CrossRefGoogle Scholar
  26. Planas M, Chamorro A, Quintas P, Vilar A (2008) Establishment and maintenance of threatened long-snouted seahorse Hippocampus guttulatus, broodstock in captivity. Aquaculture 283:19–28CrossRefGoogle Scholar
  27. Planas M, Quintas P, Chamorro A (2009) Snout abnormalities in young seahorses (Hippocampus guttulatus) (Project Hippocampus). Book of abstracts, World Aquaculture 2009. World Aquaculture Society:668Google Scholar
  28. Planas M, Quintas P, Chamorro A, Silva C (2010) Female maturation, egg characteristics and fatty acids profile in the European long-snouted seahorse Hippocampus guttulatus. Anim Rep Sci 122:66–73CrossRefGoogle Scholar
  29. Planas M, Blanco A, Chamorro A, Valladares S, Pintado J (2012) Temperature-induced changes of growth and survival in the early development of the seahorse Hippocampus guttulatus. J Exp Mar Biol Ecol 438:154–162CrossRefGoogle Scholar
  30. Quintas P, Chamorro A, Piñero S, Medina I, Planas M (2007) Producción de Artemia para la alimentación del caballito de mar Hippocampus guttulatus Cuvier 1829 en cautividad. XI Congreso Nacional de Acuicultura, Vigo, pp. 555–558Google Scholar
  31. Sargent JR, Henderson RJ, Tocher DR (1989) The lipids. In: Halver J (ed) Fish nutrition, 2nd edn. Academic Press, New York, pp. 153–218Google Scholar
  32. Sargent JR, Bell MV, Bell JG, Henderson RJ, Tocher DR (1995) Origins and functions of n-3 polyunsaturated fatty acids in marine organisms. In Cevc G., Paltauf F (eds). Proceedings of the 6th International Colloquium: Phospholipids: characterization, metabolism, and novel biological applications. 1995 pp. 248–259Google Scholar
  33. Sargent J, McEvoy L, Estévez A, Bell G, Bell M, Henderson J, Tocher D (1999) Lipid nutrition of marine fish during early development: current status and future directions. Aquaculture 179:217–229CrossRefGoogle Scholar
  34. Sargent JR, Bell JG, Tocher DR (2002) The lipids. In: Halver JE, Hardy RW (eds) Fish nutrition, 3 edn. Academic Press, San Diego, pp. 181–257Google Scholar
  35. Sorgeloos P (1980) The use of brine shrimp Artemia in aquaculture, p. 25–45. In: Persoone G, Sorgeloos P, Roels O, Jaspers E (eds) The brine shrimp Artemia. Vol. 3. Ecology, culturing, use in aquaculture. Universa Press, Wetteren, pp. 25–46Google Scholar
  36. Støttrup JG, Jacobsen C, Tomkiewicz T, Jarlbaek H (2013) Modification of essential fatty acid composition in broostock of cultured European eel Anguilla anguilla L. Aquac Nutr 19:172–185CrossRefGoogle Scholar
  37. Thinh LV, Renaud SM, Parry DL (1999) Evaluation of recently isolated Australian tropical microalgae for the enrichment of the dietary value of brine shrimp, Artemia nauplii. Aquaculture 170:161–173CrossRefGoogle Scholar
  38. Tlusty MF, Goldstein J, Fiore D (2005) Hatchery performance of early benthic juvenile American lobsters (Homarus americanus) fed enriched frozen adult Artemia diets. Aquac Nutr 11:191–198CrossRefGoogle Scholar
  39. Tocher DR (2003) Metabolism and functions of lipids and fatty acids in teleost fish. Rev Fish Sci 11:107–184CrossRefGoogle Scholar
  40. Tocher DR, Sargent JR (1984) Analysis of lipids and fatty acids in ripe roes of some northwest European marine fish. Lipids 19:492–499CrossRefPubMedGoogle Scholar
  41. Valladares S, Planas M (2012) Non-lethal dorsal fin sampling for stable isotope analysis in seahorses. Aquat Ecol 46:363–370CrossRefGoogle Scholar
  42. Vismara R, Vestri S, Barsanti L, Gualtieri P (2003) Diet-induced variations in fatty acid content and composition of two on-grown stages of Artemia salina. J Appl Phycol 15:477–483CrossRefGoogle Scholar
  43. Walne PR (1966) Experiments in the large scale culture of the larvae of Ostrea edulis. Fishery Invest., Lond. Ser. II. 25: 53 pp.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Miquel Planas
    • 1
    Email author
  • Catarina Silva
    • 2
  • Patricia Quintas
    • 1
  • Alexandro Chamorro
    • 1
  • Sonia Piñero
    • 1
  1. 1.Instituto de Investigaciones Marinas (CSIC)VigoSpain
  2. 2.Metapopulation Research Centre, Department of BiosciencesUniversity of HelsinkiTurkuFinland

Personalised recommendations