Journal of Applied Phycology

, Volume 29, Issue 2, pp 789–797 | Cite as

Extracts of seaweeds as potential inhibitors of quorum sensing and bacterial growth

  • A. P. Carvalho
  • D. Batista
  • S. Dobretsov
  • R. Coutinho


Macroalgae are an important source of antimicrobial compounds. However, it is unclear if these compounds are produced by the algae themselves, by their associated bacteria, or by both. The main aim of this study was to investigate the potential of macroalgae and their associated microorganisms to inhibit bacterial quorum sensing (QS) and growth. Before extraction, half of the algal specimens were treated with 30% ethanol to remove surface associated bacteria. Canistrocarpus cervicornis extracts were able to inhibit QS of the reporter Chromobacterium violaceum CV017, where extracts with associated bacteria were more efficient than those without bacteria. However, not all algal extracts that inhibited QS of CV017 were able to inhibit bacterial attachment of Pseudomonas aeruginosas PA01, showing specific activity of algal metabolites. Only 58% of the extracts showed antibacterial activity against eight marine fouling and pathogenic bacterial strains tested. Our data suggests that algae and their associated microbiota are important sources of antimicrobial compounds which potentially can be used in future biotechnological applications.


Macroalgae Bacteria Quorum sensing Biofouling 



The authors thank Dra. Maria Helena Baeta Neves (Marine Biotechnology Division/IEAPM) and Dr. William Romão Batista (Chemistry Division/IEAPM) for all assistance. Dr. Claire Hellio (University of Portsmouth) is acknowledged for providing microbial culture that was used in this study. Ana Polycarpa Carvalho acknowledges Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for their support of her master’s. Daniela Batista acknowledges CNPq-PDJ for their support of her postdoctoral grant. This research was supported by the “Ciencias sem Fronteiras” program of Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) for collaborative research with Sergey Dobretsov. We thank the anonymous reviewers and the editor for invaluable comments and suggestions during the peer review process. 


  1. Abarzua S, Jakubowski S (1995) Biotechnological investigation for the prevention of biofouling. I. Biological and biochemical principles for the prevention of biofouling. Mar Ecol Prog Ser 123:301–312CrossRefGoogle Scholar
  2. Abarzua S, Jakubowski S, Eckert S, Fuchs P (1999) Biotechnological investigation for the prevention of marine biofouling II. Blue-green algae as potential producers of biogenic agents for the growth inhibition of microfouling organisms. Bot Mar 42:459–465CrossRefGoogle Scholar
  3. Antunes LCM, Ferreira RBR, Buckner MMC, Finlay BB (2010) Quorum sensing in bacterial virulence. Microbiology 156:2271–2282CrossRefPubMedGoogle Scholar
  4. Batista D, Carvalho AP, Costa R, Coutinho R, Dobretsov S (2014) Extracts of macroalgae from the Brazilian coast inhibit bacterial quorum sensing. Bot Mar 57:441–447CrossRefGoogle Scholar
  5. Bhadury P, Wright PC (2004) Exploitation of marine algae: biogenic compounds for potential antifouling applications. Planta 219:561–578CrossRefPubMedGoogle Scholar
  6. Bianco ÉM, Rogers R, Teixeira VL, Pereira RC (2009) Antifoulant diterpenes produced by the brown seaweed Canistrocarpus cervicornis. J Appl Phycol 21:341–346Google Scholar
  7. Bianco ÉM, Francisco TM, Pinheiro CB, Azeredo RBV, Teixeira VL, Pereira RC (2015a) 10 β-Acetoxy-8α,9α-epoxy-14β-hydroxy-7-oxodolastane—a new diterpene isolated from the brazilian brown macroalga Canistrocarpus cervicornis. Helvitica Chim Acta 98:785–794Google Scholar
  8. Bianco ÉM, Francisco TM, Pinheiro CB, Azeredo RBV, Teixeira VL, Pereira RC (2015b) 4α-Acetoxyamijidictyol—a new antifeeding dolastane diterpene from the brazilian brown alga Canistrocarpus cervicornis. Chem Biodivers 12:1665–1677Google Scholar
  9. Blackburn TM, Essl F, Evans T, Hulme PE, Jeschke JM, Kühn I, Kumschick S, Markova Z, Mrugała A, Nentwig W, Pergl J, Pysek P, Rabitsch W, Ricciardi A, Richardson DM, Sendek A, Vila M, Wilson JRU, Winter M, Genovesi P, Bacher S (2014) A unified classification of alien species based on the magnitude of their environmental impacts. PLoS Biol 12:e1001850CrossRefPubMedPubMedCentralGoogle Scholar
  10. Borchardt SA, Allain EJ, Michels JJ, Stearns GW, Kelly RF, McCoy WF (2001) Reaction of acylated homoserine lactone bacterial signaling molecules with oxidized halogen antimicrobials. Appl Environ Microbiol 67:3174–3179CrossRefPubMedPubMedCentralGoogle Scholar
  11. Brasileiro PS, Yoneshigue-Valentin Y, Bahia RG, Reis RP, Amado Filho GM (2009) Algas marinhas bentônicas da região de Cabo Frio e arredores: Síntese do conhecimento. Rodriguésia 60:39–66Google Scholar
  12. Carlton JT, Geller JB (1993) Ecological roulette: the global transport of nonindigenous marine organisms. Science 261:78–82CrossRefGoogle Scholar
  13. Chambers LD, Stokes KR, Walsh FC, Wood RJK (2006) Modern approaches to marine antifouling coatings. Surf Coatings Technol 201:3642–3652CrossRefGoogle Scholar
  14. Chernin LS, Winson MK, Thompson JM, Haran S, Bycroft BW, Chet I, Stewart GSAB (1998) Chitinolytic activity in Chromobacterium violaceum: substrate analysis and regulation by quorum sensing. J Bacteriol 180:4435–4441PubMedPubMedCentralGoogle Scholar
  15. Cho JY, Kang JY, Hong YK, Baek HH, Shin HW, Kim MS (2012) Isolation and structural determination of the antifouling diketopiperazines from marine-derived Streptomyces praecox 291-11. Biosci Biotechnol Biochem 76:1116–1121CrossRefPubMedGoogle Scholar
  16. Choo JH, Rukayadi Y, Hwang J (2006) Inhibition of bacterial quorum sensing by vanilla extract. Lett Appl Microbiol 42:637–641PubMedGoogle Scholar
  17. Coelho MR, Langston WJ, Bebianno MJ (2006) Effect of TBT on Ruditapes decussatus juveniles. Chemosphere 63:1499–1505CrossRefPubMedGoogle Scholar
  18. Da Gama BAP, Pereira RC, Carvalho AGV, Coutinho R, Yoneshigue-Valentin Y (2002) The effects of seaweed secondary metabolites on biofouling. Biofouling 18:13–20CrossRefGoogle Scholar
  19. Da Gama BAP, Pereira RC, Coutinho R (2009) Bioincrustação marinha. In: Pereira RC, Soares-Gomes A (orgs.) Biologia Marinha, 2nd. Interciência, Rio de Janeiro, pp 299–318Google Scholar
  20. Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberq EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–298CrossRefPubMedGoogle Scholar
  21. de Nys R, Steinberg PD, Willemsen P, Dworjanyn SA, Gabelish CL, King RJ (1995) Broad spectrum effects of secondary metabolites from the red alga Delisea pulchra in antifouling assays. Biofouling 8:259–271CrossRefGoogle Scholar
  22. de Nys R, Leya T, Maximilien R, Asfar A, Nair PSR, Steinberg PD (1996) The need for standardised broad scale bioassay testing: a case study using the red algae Laurencia rigida. Biofouling 10:213–224CrossRefPubMedGoogle Scholar
  23. Devi P, Wahidulla S, Kamat T, DeSouza L (2011) Screening marine organisms for antimicrobial activity against clinical pathogens. Indian J Mar Sci 40:338–346Google Scholar
  24. DiChristina T, DeLong E (1993) Design and application of rRNA targeted oligonucleotide probes for the dissimilatory iron-and manganese-reducing bacterium Shewanella putrefaciens. Appl Environ Microbiol 59:4152–4160PubMedPubMedCentralGoogle Scholar
  25. Dickschat JS, Martens T, Brinkhoff T, Simon M, Schulz S (2005) Volatiles released by a streptomyces species isolated from the North Sea. Chem Biodivers 2:837–865CrossRefPubMedGoogle Scholar
  26. Dobretsov S, Qian P (2002) Effect of bacteria associated with the green alga Ulva reticulata on marine micro- and macrofouling. Biofouling 18:217–228CrossRefGoogle Scholar
  27. Dobretsov S, Teplitski M, Paul V (2009) Quorum sensing in the marine environment and its relationship to biofouling. Biofouling 25:413–427CrossRefPubMedGoogle Scholar
  28. Egan S, Thomas T, Holmstrom C, Kjelleberg S (2000) Phylogenetic relationship and antifouling activity of bacterial epiphytes from the marine alga Ulva lactuca. Environ Microbiol 2:343–347CrossRefPubMedGoogle Scholar
  29. Egan S, Thomas T, Kjelleberg S (2008) Unlocking the diversity and biotechnological potential of marine surface associated microbial communities. Curr Opin Microbiol 11:219–225CrossRefPubMedGoogle Scholar
  30. Galloway WRJD, Hodgkinson JT, Bowden SD, Welch M, Spring DR (2011) Quorum sensing in gram-negative bacteria: small-molecule modulation of AHL and AI-2 quorum sensing pathways. Chem Rev 44:28–67CrossRefGoogle Scholar
  31. Garcia-Bueno N, Decottignies P, Turpin V, Dumay J, Paillard C, Stiger-Pouvreau V, Kervarec N, Pouchus YF, Marin-Atucha AA, Fleurence J (2014) Seasonal antibacterial activity of two red seaweeds, Palmaria palmata and Grateloupia turuturu, on European abalone pathogen Vibrio harveyi. Aquat Living Resour 27:83–89CrossRefGoogle Scholar
  32. Goecke F, Labes A, Wiese J, Imhoff JF (2010) Chemical interactions between marine macroalgae and bacteria. Mar Ecol Prog Ser 409:267–300CrossRefGoogle Scholar
  33. Gollasch S (2002) The importance of ship hull fouling as a vector of species introductions into the North Sea. Biofouling 18:105–121CrossRefGoogle Scholar
  34. Gonzalez-Rodriguez E (1994) Yearly variation in primary productivity of marine phytoplankton from Cabo Frio (RJ, Brazil) region. Hydrobiologia 294:145–156CrossRefGoogle Scholar
  35. Grondin M, Marion M, Denizeau F, Averill-bates DA (2007) Tributyltin induces apoptotic signaling in hepatocytes through pathways involving the endoplasmic reticulum and mitochondria. Toxicol Appl Pharmacol 222:57–68CrossRefPubMedGoogle Scholar
  36. Harder T, Dobretsov S, Qian P (2004) Waterborne polar macromolecules act as algal antifoulants in the seaweed Ulva reticulata. Mar Ecol Prog Ser 274:133–141CrossRefGoogle Scholar
  37. Hellio C, Bremer G, Pons AM, Le Gal Y, Bourgougnon N (2000) Inhibition of the development of microorganisms (bacteria and fungi) by extracts of marine algae from Brittany, France. Appl Microbiol Biotechnol 54:543–549CrossRefPubMedGoogle Scholar
  38. Hellio C, Le Broise DD, Dufossé L, Le Gal Y, Bourgougnon N (2001) Inhibition of marine bacteria by extracts of macroalgae: potential use for environmentally friendly antifouling paints. Mar Env Res 52:231–247Google Scholar
  39. Hellio C, Maréchal JP, Da Gama BAP, Pereira RC, Clare AS (2009) Natural marine products with antifouling activities. In: Hellio C, Yebra DMY (eds) Advances in marine antifouling coatings and technologies. Woodshead Publishing, Cambridge, pp. 572–622CrossRefGoogle Scholar
  40. Hellio C (2010) The potential of marine biotechnology for the development of new antifouling solutions. Le Journal Des Sciences Halieutique et Aquatique 2:35–41Google Scholar
  41. Holm ER (2012) Barnacles and biofouling. Integr Comp Biol 52:348–355CrossRefPubMedGoogle Scholar
  42. Jha B, Kavita K, Westphal J, Hartmann A, Schmitt-Kopplin P (2013) Quorum sensing inhibition by Asparagopsis taxiformis, a marine macro alga: separation of the compound that interrupts bacterial communication. Mar Drugs 11:253–265CrossRefPubMedPubMedCentralGoogle Scholar
  43. Joint I, Tait K, Wheeler G (2007) Cross-kingdom signalling: exploitation of bacterial quorum sensing molecules by the green seaweed Ulva. Phil Trans R Soc B 362:1223–1233CrossRefPubMedPubMedCentralGoogle Scholar
  44. Kalia VC (2013) Quorum sensing inhibitors: an overview. Biotechnol Adv 31:224–245CrossRefPubMedGoogle Scholar
  45. Kanagasabhapathy M, Yamazaki G, Ishida A, Sasaki H, Nagata S (2009) Presence of quorum-sensing inhibitor-like compounds from bacteria isolated from the brown alga Colpomenia sinuosa. Lett Appl Microbiol 49:573–579CrossRefPubMedGoogle Scholar
  46. Kientz B, Thabard M, Cragg SM, Pope J, Hellio C (2011) A new method for removing microflora from macroalgal surfaces: an important step for natural product discovery. Bot Mar 54:2655–2661CrossRefGoogle Scholar
  47. Kievit TRD, Gillis R, Marx S, Brown C, Iglewski BH (2001) Quorum-sensing genes in Pseudomonas aeruginosa biofilms: their role and expression patterns. Appl Environ Microbiol 67:1865–1873CrossRefPubMedPubMedCentralGoogle Scholar
  48. Manefield M, Rasmussen TB, Henzter M, Andersen JB, Steinberg P, Kjelleberg S, Givskov M (2002) Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. Microbiology 148:1119–1127CrossRefPubMedGoogle Scholar
  49. Maréchal JP, Culiolib G, Hellio C, Thomas-Guyon H, Callow ME, Clare AS, Ortalo-Magn A (2004) Seasonal variation in antifouling activity of crude extracts of the brown alga Bifurcaria bifurcata (Cystoseiraceae) against cyprids of Balanus amphitrite and the marine bacteria Cobetia marina and Pseudoalteromonas haloplanktis. J Exp Marine Biol 313:47–62CrossRefGoogle Scholar
  50. Maximilien R, de Nys R, Holmstrom C, Gram L, Givskov M, Crass K, Kjelleberg S, Steinberg PD (1998) Chemical mediation of bacterial surface colonisation by secondary metabolites from the red alga Delisea pulchra. Aquat Microb Ecol 15:233–246CrossRefGoogle Scholar
  51. Moura LDA, Sanchez EF, Bianco ÉM, Pereira RC, Teixeira VL, Fuly AL (2011) Antiophidian properties of a dolastane diterpene isolated from the marine brown alga Canistrocarpus cervicornis. Biomed Prev Nutr 1:61–66CrossRefGoogle Scholar
  52. Nealson KH, Myers C (1992) Microbial reduction of manganese and iron: new approaches to carbon cycling. App Environ Microbiol 58:439–443Google Scholar
  53. O’Toole G, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79CrossRefPubMedGoogle Scholar
  54. Persson F, Svensson R, Nylund GM, Fredriksson NJ, Pavia H, Hermansson M (2011) Ecological role of a seaweed secondary metabolite for a colonizing bacterial community. Biofouling 27:579–588CrossRefPubMedGoogle Scholar
  55. Plouguerné E, Hellio C, Deslandes E, Véron B, Stiger-Pouvreau V (2008) Anti- microfouling activities of extracts of two invasive algae: Grateloupia turuturu and Sargassum muticum. Bot Mar 51:202–208CrossRefGoogle Scholar
  56. Plouguerné E, Hellio C, Cesconetto C, Thabard M, Masin K, Véron B, Pereira RC, Gama BAP (2010a) Antifouling activity as a function of population variation in Sargassum vulgare from the littoral of Rio de Janeiro. J Appl Phycol 22:717–724Google Scholar
  57. Plouguerné E, Ioannou E, Georgantea P (2010b) Anti-microfouling activity of lipidic metabolites from the invasive brown alga Sargassum muticum (Yendo) Fensholt. Mar Biotechnol 12:52–61CrossRefPubMedGoogle Scholar
  58. Rasmussen TB, Manefield M, Andersen JB, Eberl L, Anthoni U, Christophersen C, Steinberg P, Kjelleberg S, Givskov M (2000) How Delisea pulchra furanones affect quorum sensing and swarming motility in Serratia liquefaciens MG1. Microbiology 146:3237–3244CrossRefPubMedGoogle Scholar
  59. Rickert E, Karsten U, Pohnert G, Wahl M (2015) Seasonal fluctuations in chemical defenses against macrofouling in Fucus vesiculosus and Fucus serratus from the Baltic Sea. Biofouling 31:363–377CrossRefPubMedGoogle Scholar
  60. Romero M, Martin-Cuadrado AB, Roca-Rivada A, Cabello AM, Otero A (2011) Quorum quenching in cultivable bacteria from dense marine coastal microbial communities. FEMS Microbiol Ecol 75:205–217CrossRefPubMedGoogle Scholar
  61. Saha M, Wahl M (2013) Seasonal variation in the antifouling defence of the temperate brown alga Fucus vesiculosus. Biofouling 29:661–668CrossRefPubMedGoogle Scholar
  62. Santos AO, Britta EA, Bianco EM, Ueda-Nakamura T, Dias BP, Pereira RC, Nakamura CV (2011) 4-Acetoxydolastane diterpene from the Brazilian brown alga Canistrocarpus cervicornis as antileishmanial agent. Mar Drugs 9:2369–2383CrossRefPubMedPubMedCentralGoogle Scholar
  63. Schmitt TM, Hay ME, Lindquist N (1995) Constraints on chemically mediated coevolution: multiple functions for seaweed secondary metabolites. Ecology 76:107–123CrossRefGoogle Scholar
  64. Schultz MP, Bendick JA, Holm ER, Hertel WM (2011) Economic impact of biofouling on a naval surface ship. Biofouling 27:87–98CrossRefPubMedGoogle Scholar
  65. Steinberg PD, de Nys R, Kjelleberg S (1998) Chemical inhibition of epibiota by Australian seaweeds. Biofouling 12:227–244CrossRefGoogle Scholar
  66. Sudatti DB, Fujii MT, Rodrigues SV, Turra A, Pereira RC (2011) Effects of abiotic factors on growth and chemical defenses in cultivated clones of Laurencia dendroidea J. Agardh (Ceramiales, Rhodophyta). Mar Biol 158:1439–1446CrossRefGoogle Scholar
  67. Thabard M, Daoud GI, Véron B, Fletcher RL, Hellio C (2009) Screening of biological activities of extracts of Ralfsia verrucosa, Petalonia fascia and Scytosiphon lomentaria (Phaeophyceae, Scytosiphonales) for potential antifouling application. Electron J Nat Subst 4:1–10Google Scholar
  68. Thabard M, Gros O, Hellio C, Mare J (2011) Sargassum polyceratium (Phaeophyceae, Fucaceae) surface molecule activity towards fouling organisms and embryonic development of benthic species. Bot Mar 54:147–157CrossRefGoogle Scholar
  69. Val AGD, Platas G, Basilio A, Cabello A, Gorrochatequi J, Suay I, Portillo E, Jiménez del Rio M, Reina GG, Petáez F (2001) Screening of antimicrobial activities in red, green and brown macroalgae from Gran Canaria (Canary Islands, Spain). Int Microbiol 4:35–40Google Scholar
  70. Vallim MA, Barbosa JE, Cavalcanti DN, De-Paula JC, Silva VAGG, Teixeira VL, Paixão ICNP (2010) In vitro antiviral activity of diterpenes isolated from the Brazilian brown alga Canistrocarpus cervicornis. J Med Plants Res 4:2379–2382Google Scholar
  71. Vergés A, Paul NA, Sreinberg PD (2008) Sex and life-history stage alter herbivore responses to a chemically defended red alga. Ecology 89:1334–1343CrossRefPubMedGoogle Scholar
  72. Wahl M (1989) Marine epibiosis. I. Fouling and antifouling: some basic aspects. Mar Ecol Prog Ser 58:175–189CrossRefGoogle Scholar
  73. Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346CrossRefPubMedGoogle Scholar
  74. Yebra DM, Kiil S, Weinell CE, Dam-Johansen K (2006) Presence and effects of marine microbial biofilms on biocide-based antifouling paints. Biofouling 22:33–41CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Divisão de Biotecnologia MarinhaInstituto de Estudos do Mar Almirante Paulo MoreiraArraial do CaboBrazil
  2. 2.Programa de Pós-Graduação em Dinâmica dos Oceanos e da TerraLAGEMAR UFFNiteróiBrazil
  3. 3.Marine Science and Fisheries Department, Agriculture and marine Science CollegeSultan Qaboos UniversityMuscatSultanate of Oman
  4. 4.Center of Excellence in Marine BiotechnologySultan Qaboos UniversityMuscatSultanate of Oman

Personalised recommendations