Skip to main content
Log in

Detection of microcystin producing cyanobacteria in Spirulina dietary supplements using multiplex HRM quantitative PCR

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Arthrospira species, under the name ‘Spirulina’, are used as food supplement for its protein, vitamins, and minerals which have several health benefits. Cyanobacterial toxins including microcystins can possibly contaminate these dietary supplements causing hepatotoxicity, tumour formation, and other disorders. The safe use of dietary supplements necessitates the need to assess such toxins in the algal food supplement. The methods which evaluate these dietary supplements should be highly sensitive, cost-effective, and rapid. In this study, multiplex HRM qPCR analysis was used to detect microcystin (MC)-producing cyanobacteria in Spirulina dietary supplements. The multiplex HRM qPCR detection limit was found to be 25 ag of mcyB spiked in a standard concentration of pcb (25 pg). Two distinct melt curves characteristic of pcb (Tm 82.8 ± 0.07 °C) and mcyB (Tm 77.9 ± 0.05 °C) were observed. Microcystin contamination was detected only in the fish food supplements and not in human dietary supplements of Spirulina. Liquid chromatography–high-resolution mass spectrometry analysis further confirmed the presence of the congeners of microcystin in the identified positive samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akao Y, Ebihara T, Masuda H, Saeki Y, Akazawa T, Hazeki K, Hazeki O, Matsumoto M, Seya T (2009) Enhancement of antitumor natural killer cell activation by orally administered Spirulina extract in mice. Cancer Sci 100:1494–1501

  • Al-Tebrineh J, Gehringer MM, Akcaalan R, Neilan BA (2011) A new quantitative PCR assay for the detection of hepatotoxigenic cyanobacteria. Toxicon 57:546–554

    Article  CAS  PubMed  Google Scholar 

  • Al-Tebrineh J, Pearson LA, Yasar SA, Neilan BA (2012) A multiplex qPCR targeting hepato- and neurotoxigenic cyanobacteria of global significance. Harmful Algae 15:19–25

    Article  CAS  Google Scholar 

  • Barón-Sola Á, Ouahid Y, del Campo FF (2012) Detection of potentially producing cylindrospermopsin and microcystin strains in mixed populations of cyanobacteria by simultaneous amplification of cylindrospermopsin and microcystin gene regions. Ecotoxicol Environ Saf 75:102–108

    Article  PubMed  Google Scholar 

  • Beasley VR, Dahlem AM, Cook WO, Valentine WM, Lovell RA, Hooser SB, Harada K, Suzuki M, Carmichael WW (1989) Diagnostic and clinically important aspects of cyanobacterial (blue-green algae) toxicoses. J Vet Diagnostic Investig 1:359–365

    Article  CAS  Google Scholar 

  • Belay A, Ota Y, Miyakawa K, Shimamatsu H (1993) Current knowledge on potential health benefits of Spirulina. J Appl Phycol 5:235–241

    Article  Google Scholar 

  • Belay A, Kato T, Ota Y (1996) Spirulina (Arthrospira): potential application as an animal feed supplement. J Appl Phycol 8:303–311

  • Belay A (2008) Spirulina (Arthrospira): production and quality assurance. In: Gershwin ME, Belay A (eds) Spirulina in human nutrition and health. CRC Press, Boca Raton, pp. 1–25

  • Belay A (2013) Biology and industrial production of Arthrospira (Spirulina). In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology. Blackwell, Oxford, pp. 339–358

    Chapter  Google Scholar 

  • Costa J, Campos B, Amaral JS, Nunes ME, Beatriz PP, Oliveira M, Mafra I (2016) HRM analysis targeting ITS1 and matK loci as potential DNA mini-barcodes for the authentication of Hypericum perforatum and Hypericum androsaemum in herbal infusions. Food Control 61:105–114

    Article  CAS  Google Scholar 

  • Devi SG, Fathima AA, Radha S, Arunraj R, Curtis WR, Ramya M (2015) A rapid and economical method for efficient DNA extraction from diverse soils suitable for metagenomic applications. PLoS One 10(7):e0132441

    Article  PubMed  PubMed Central  Google Scholar 

  • Falconer IR (1991) Tumor promotion and liver injury caused by oral consumption of cyanobacteria. Environ Toxicol Water Qual 6:177–184

    Article  Google Scholar 

  • Forghani F, Singh P, Seo KH, Oh DH (2016) A novel pentaplex real time (RT)- PCR high resolution melt curve assay for simultaneous detection of emetic and enterotoxin producing Bacillus cereus in food. Food Control 60:560–568

    Article  CAS  Google Scholar 

  • Gao Y, Yu R, Murray SA, Chen J, Kang Z, Zhang Q, Kong F, Zhoua M (2015) High specificity of a quantitative PCR assay targeting a saxitoxin gene for monitoring toxic algae associated with paralytic shellfish toxins in the Yellow Sea. Appl Environ Microbiol 81:6973–6981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilroy DJ, Kauffman KW, Hall R, Huang X, Chu FS (2000) Assessing potential health risks from microcystin toxins in blue-green algae dietary supplements. Environ Health Perspect 108:435–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grobbelaar JU (2003) Quality control and assurance: crucial for the sustainability of the applied phycology industry. J Appl Phycol 15:209–215

    Article  CAS  Google Scholar 

  • Grobbelaar JU (2013) Inorganic algal nutrition. In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology. John Wiley & Sons, Oxford, pp.123–133

  • Gupta N, Pant SC, Vijayaraghavan R, Rao PVL (2003) Comparative toxicity evaluation of cyanobacterial cyclic peptide toxin microcystin variants (LR, RR, YR) in mice. Toxicology 188:285–296

    Article  CAS  PubMed  Google Scholar 

  • Guzmán-Guillén R, Prieto AI, Moreno I, Soria EM, Cameán AM (2011) Effects of thermal treatments during cooking, microwave oven and boiling, on the unconjugated microcystin concentration in muscle of fish (Oreochromis niloticus). Food Chem Toxicol 49:2060–2067

    Article  PubMed  Google Scholar 

  • Heussner AH, Mazija L, Fastner J, Dietrich DR (2012) Toxin content and cytotoxicity of algal dietary supplements. Toxicol Appl Pharmacol 265:263–271

    Article  CAS  PubMed  Google Scholar 

  • Mankiewicz-Boczek J, Palus J, Gagala I, Izydorczyk K, Jurczak T, Dziubałtowska E, Stepnik M, Arkusz J, Komorowskab M, Skowrona A, Zalewski M (2011) Effects of microcystins-containing cyanobacteria from a temperate ecosystem on human lymphocytes culture and their potential for adverse human health effects. Harmful Algae 10:356–365

    Article  CAS  Google Scholar 

  • Mathew B, Sankaranarayanan R, Nair PP, Varghese C, Somanathan T, Amma BP, Amma NS, Nair MK (1995) Evaluation of chemoprevention of oral cancer with Spirulina fusiformis. Nutr Cancer 24:197–202

    Article  CAS  PubMed  Google Scholar 

  • Mazokopakis EE, Starakis IK, Papadomanolaki MG, Mavroeidi NG, Ganotakis ES (2014) The hepatoprotective and hypolipidemic effects of Spirulina (Arthrospira platensis) supplementation in a Cretan population with non-alcoholic fatty liver disease: a prospective pilot study. Ann Gastroenterol 27:387–394

    PubMed  PubMed Central  Google Scholar 

  • Ngwa FF, Madramootoo CA, Jabaji S (2014) Development and application of a multiplex qPCR technique to detect multiple microcystin-producing cyanobacterial genera in a Canadian freshwater lake. J Appl Phycol 26:1675–1687

    Article  CAS  Google Scholar 

  • Parikh P, Mani U, Iyer U (2001) Role of Spirulina in the control of glycemia and lipidemia in type 2 diabetes mellitus. J Med Food 4:193–199

    Article  PubMed  Google Scholar 

  • Parker CH, Stutts WL, Degrasse SL (2015) Development and validation of a liquid chromatography-tandem mass spectrometry method for the quantitation of microcystins in blue-green algal dietary supplements. J Agric Food Chem 63:10303–10312

    Article  CAS  PubMed  Google Scholar 

  • Pekar H, Westerberg E, Bruno O, Lääne, Persson K, Sundström L, Thim AM (2016) Fast, rugged and sensitive ultra high pressure liquid chromatography tandem mass spectrometry method for analysis of cyanotoxins in raw water and drinking water—first findings of anatoxins, cylindrospermopsins and microcystin variants in Swedish source waters and infiltration ponds. J Chromatogr A 1429:265–276

    Article  CAS  PubMed  Google Scholar 

  • Pimentel JSM, Giani A (2013) Estimating toxic cyanobacteria in a Brazilian reservoir by quantitative real-time PCR, based on the microcystin synthetase D gene. J Appl Phycol 25:1545–1554

    Article  CAS  Google Scholar 

  • Preece EP, Moore BC, Swanson ME, Hardy FJ (2015) Identifying best methods for routine ELISA detection of microcystin in seafood. Environ Monit Assess

  • Puddick J, Prinsep MR, Wood SA, Kaufononga SAF, Cary SC, Hamilton DP (2014) High levels of structural diversity observed in microcystins from Microcystis CAWBG11 and characterization of six new microcystin congeners. Mar Drugs 12:5372–5395

    Article  PubMed  PubMed Central  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Appl Microbiol 111:–61

  • Ririe KM, Rasmussen RP, Wittwer CT (1997) Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Anal Biochem 245:154–160

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Rueda O, Soler M, Calvó L, García-Gil JL (2011) Multiplex real-time PCR for the simultaneous detection of Salmonella spp. and Listeria monocytogenes in food samples. Food Anal Methods 4:131–138

    Article  Google Scholar 

  • Saker ML, Jungblut AD, Neilan BA, Rawn DFK, Vasconcelos VM (2005) Detection of microcystin synthetase genes in health food supplements containing the freshwater cyanobacterium Aphanizomenon flos-aquae. Toxicon 46:555–562

    Article  CAS  PubMed  Google Scholar 

  • Saker ML, Welker M, Vasconcelos VM (2007) Multiplex PCR for the detection of toxigenic cyanobacteria in dietary supplements produced for human consumption. Appl Microbiol Biotechnol 73:1136–1142

    Article  CAS  PubMed  Google Scholar 

  • Samuels R, Mani UV, Iyer UM, Nayak US (2002) Hypocholesterolemic effect of Spirulina in patients with hyperlipidemic nephrotic syndrome. J Med Food 5:91–96

    Article  CAS  PubMed  Google Scholar 

  • Sangolkar LN, Maske SS, Muthal PL, Kashyap SM, Chakrabarti T (2009) Isolation and characterization of microcystin producing Microcystis from a Central Indian water bloom. Harmful Algae 8:674–684

    Article  CAS  Google Scholar 

  • Schmidt J, Wilhelm S, Boyer G (2014) The fate of microcystins in the environment and challenges for monitoring. Toxins 6:3354–3387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh S, Kate BN, Banerjee UC (2005) Bioactive compounds from cyanobacteria and microalgae: an overview. Crit Rev Biotechnol 25:73–95

    Article  CAS  PubMed  Google Scholar 

  • Sorichetti RJ, McLaughlin JT, Creed IF, Trick CG (2014) Suitability of a cytotoxicity assay for detection of potentially harmful compounds produced by freshwater bloom-forming algae. Harmful Algae 31:177–187

    Article  CAS  PubMed  Google Scholar 

  • Strano-Rossi S, Odoardi S, Castrignano E et al (2015) Liquid chromatography-high resolution mass spectrometry (LC-HRMS) determination of stimulants, anorectic drugs and phosphodiesterase 5 inhibitors (PDE5I) in food supplements. J Pharm Biomed Anal 106:144–152

    Article  CAS  PubMed  Google Scholar 

  • Te SH, Chen EY, Gin KY (2015) Comparison of quantitative PCR and droplet digital PCR multiplex assays for two genera of bloom-forming cyanobacteria, Cylindrospermopsis and Microcystis. Appl Environ Microbiol 81:5203–5211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valério E, Campos A, Osório H, Vasconcelos V (2016) Proteomic and real-time PCR analyses of Saccharomyces cerevisiae VL3 exposed to microcystin-LR reveals a set of protein alterations transversal to several eukaryotic models. Toxicon 112:22–28

    Article  PubMed  Google Scholar 

  • Vichi S, Lavorini P, Funari E, Scardala S, Testa E (2012) Contamination by Microcystis and microcystins of blue-green algae food supplements (BGAS) on the Italian market and possible risk for the exposed population. Food Chem Toxicol 50:4493–4499

    Article  CAS  PubMed  Google Scholar 

  • Vossen RHAM, Aten E, Roos A, Den Dunnen JT (2009) High-resolution melting analysis (HRMA)—more than just sequence variant screening. Hum Mutat 30:860–866

    Article  CAS  PubMed  Google Scholar 

  • Xanthopoulou A, Ganopoulos I, Kalivas A, Osathanunkul M, Chatzopoulou P, Tsaftaris A, Madesis P (2016) Multiplex HRM analysis as a tool for rapid molecular authentication of nine herbal teas. Food Control 60:113–116

    Article  CAS  Google Scholar 

  • Xiao X, Zhang L, Wu H, Yu Y, Tang Y, Liu D, Li X (2014) Simultaneous detection of Salmonella, Listeria monocytogenes, and Staphylococcus aureus by multiplex real-time PCR assays using high-resolution melting. Food Anal Methods 7:1960–1972

    Article  Google Scholar 

  • Yakes BJ, Handy SM, Kanyuck KM, DeGrasse SL (2015) Improved screening of microcystin genes and toxins in blue-green algal dietary supplements with PCR and a surface plasmon resonance biosensor. Harmful Algae 47:9–16

    Article  CAS  Google Scholar 

  • Yu P, Li J, Cen P (2002) Cloning and sequencing of the phycocyanin gene from Spirulina maxima and its evolutionary analysis. J Appl Phycol:307–310

  • Yu SZ (1995) Primary prevention of hepatocellular carcinoma. J Gastroenterol Hepatol 10:674–682

    Article  CAS  PubMed  Google Scholar 

  • Yu T, Xie P, Dai M, Liang G (2009) Determinations of MC-LR and [Dha7] MC-LR concentrations and physicochemical properties by liquid chromatography-tandem mass spectrometry. Bull Environ Contam Toxicol 83:757–760

    Article  CAS  PubMed  Google Scholar 

  • Zhu P, Zhang B, Wu J, Danga C, Lv Y, Fan J, Yan X (2014) Sensitive and rapid detection of microcystin synthetase E Gene ( mcyE ) by loop-mediated isothermal amplification: a new assay for detecting the potential microcystin-producing Microcystis in the aquatic ecosystem. Harmful Algae 37:8–16

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the support and facility given by SRM University in carrying out this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohandass Ramya.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 1698 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manali, K.M., Arunraj, R., Kumar, T. et al. Detection of microcystin producing cyanobacteria in Spirulina dietary supplements using multiplex HRM quantitative PCR. J Appl Phycol 29, 1279–1286 (2017). https://doi.org/10.1007/s10811-016-1011-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-016-1011-4

Keywords

Navigation