Skip to main content

Advertisement

Log in

Progress and challenges in producing polyhydroxyalkanoate biopolymers from cyanobacteria

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Growing concerns over conventional plastic materials and their detrimental effects on the environment have paved the way for exploring alternative sources for the production of bioplastics/biodegradable polymers. Polyhydroxyalkanoates (PHAs), being eco-friendly, biodegradable and renewable, with material properties comparable to conventional plastics, have gained significant attention for research and commercial ventures. Bacteria are reported to be the most efficient microbes in accumulating PHAs, where productivity up to 3.2 g L−1 h−1 can be attained. PHA production from a bacterial system, however, is found to be expensive. Cyanobacteria are now considered as prospective photoautotrophic systems with many advantages over higher plants for low-cost production of PHAs. Cyanobacteria have the potential to synthesize polyhydroxybutyrate (PHB) under photoautotrophic and chemoheterotrophic conditions using carbon substrates like glucose, acetate, and maltose, individually or in combination. Several studies have shown improvement in PHA yield in cyanobacteria by limiting nutrients and/or addition of various precursors. Under optimized conditions, PHB and P(3HB-co-3HV) co-polymer accumulation can reach up to 85 and 77% of dry cell weight (dcw) with a productivity of 13.3 and 1.6 mg L−1 h−1, respectively. Despite the strategic increase in the potential of PHA accumulation in cyanobacteria, the productivity does not suffice for economic production. Therefore, economically feasible production of PHA in cyanobacteria might be attained by technological improvements in various aspects like improvement in mass cultivation techniques, alternate low-cost organic substrates, use of various metabolic inhibitors to stimulate intracellular accumulation, and by suppression and overexpression of specific biosynthetic pathways by genetic engineering approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abe C, Taima Y, Nakamura Y, Doi Y (1990) New bacterial copolyester of 3-hydroxyalkanoates and 3-hydroxy-ω-fluoroalkanoates produced by Pseudomonas oleovorans. Polym Commun 31:404–406

    CAS  Google Scholar 

  • Alexander M (1981) Biodegradation of chemicals of environmental concern. Science 211:132–138

    Article  CAS  PubMed  Google Scholar 

  • Ali I, Jamil N (2016) Polyhydroxyalkanoates: current applications in the medical field. Front Biol 11:19–27

    Article  CAS  Google Scholar 

  • Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aoyagi Y, Yamashita K, Doi Y (2001) Thermal degradation of poly[(R)-3-hydroxybutyrate], poly[ε-caprolactone], and poly[(S)-lactide]. Polym Degrad Stabil 76:53–59

    Article  Google Scholar 

  • Asada Y, Miyake M, Miyake J, Kurane R, Tokiwa Y (1999) Photosynthetic accumulation of poly-(hydroxybutyrate) by cyanobacteria—the metabolism and potential for CO2 recycling. Int J Biol Macromol 25:37–42

    Article  CAS  PubMed  Google Scholar 

  • Ashby RD, Solaiman DKY, Foglia TA (2002) The synthesis of short and medium chain-length poly(hydroxyalkanoate) mixtures from glucose- or alkanoic acid-grown Pseudomonas oleovorans. J Ind Microbiol Biotechnol 28:147–153

    Article  CAS  PubMed  Google Scholar 

  • Axe DD, Bailey JE (1995) Transport of lactate and acetate through the energized cytoplasmic membrane of Escherichia coli. Biotechnol Bioeng 47:8–19

    Article  CAS  PubMed  Google Scholar 

  • Babu RP, O’Connor K, Seeram R (2013) Current progress on bio-based polymers and their future trends. Prog Biomater 2:1–16

    Article  Google Scholar 

  • Balaji S, Gopi K, Muthuvelan B (2013) A review on production of poly-β-hydroxybutyrates from cyanobacteria for the production of bio plastics. Algal Res 2:278–285

    Article  Google Scholar 

  • Ball SG, Morell MK (2003) From bacterial glycogen to starch: understanding the biogenesis of the plant starch granule. Annu Rev Plant Biol 54:207–233

    Article  CAS  PubMed  Google Scholar 

  • Basnett P, ChingK Y, Stolz M, Knowles JC, Boccaccini AR, Smith C, Locke IC, Keshavarz T, Roy I (2013) Novel poly(3-hydroxyoctanoate)/poly(3-hydroxybutyrate) blends for medical applications. React Funct Polym 73:1340–1348

    Article  CAS  Google Scholar 

  • Beardall J, Raven JA (2016) Carbon acquisition by microalgae. In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Springer, Dordrecht, pp. 89–90

    Chapter  Google Scholar 

  • Berla BM, Saha R, Immethun CM, Maranas CD, Moon TS, Pakrasi HB (2013) Synthetic biology of cyanobacteria: unique challenges and opportunities. Front Microbiol 4 doi: 10.3389/fmicb.2013.00246.

  • Bhati R, Mallick N (2012) Production and characterization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) co-polymer by a N2-fixing cyanobacterium, Nostoc muscorum Agardh. J Chem Technol Biotechnol 87:505–512

    Article  CAS  Google Scholar 

  • Bhati R, Mallick N (2015) Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer production by the diazotrophic cyanobacterium Nostoc muscorum Agardh: process optimization and polymer characterization. Algal Res 7:78–85

    Article  Google Scholar 

  • Bhati R, Mallick N (2016) Carbon dioxide and poultry waste utilization for production of polyhydroxyalkanoate biopolymers by Nostoc muscorum Agardh: a sustainable approach. J Appl Phycol 28:161–168

    Article  CAS  Google Scholar 

  • Bhati R, Samantaray S, Sharma L, Mallick N (2010) Poly-β-hydroxybutyrate accumulation in cyanobacteria under photoautotrophy. Biotechnol J 5:1181–1185

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya D, Sarma PM, Krishnan S, Mishra S, Lal B (2003) Evaluation of genetic diversity among Pseudomonas citronellolis strains isolated from oily sludge contaminated sites. Appl Environ Microbiol 69:1435–1441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bian YZ, Wang Y, Guli S, Chen GQ, Wu Q (2009) Evaluation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) conduits for peripheral nerve regeneration. Biomaterials 30:217–225

    Article  CAS  PubMed  Google Scholar 

  • Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70:313–321

    Article  CAS  Google Scholar 

  • Borowitzka MA, Moheimani NR (2013) Open pond culture systems. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, pp. 133–152

    Chapter  Google Scholar 

  • Bottomley PJ, Stewart WDP (1976) ATP pools and transients in the blue-green alga, Anabaena cylindrica. Arch Microbiol 108:249–258

    Article  CAS  PubMed  Google Scholar 

  • Brandl H, Gross RA, Lenz RW, Fuller RC (1988) Pseudomonas oleovorans as a source of poly(β-hydroxyalkanoates) for potential applications as biodegradable polyesters. Appl Environ Microbiol 54:1977–1982

    CAS  PubMed  PubMed Central  Google Scholar 

  • Braunegg G, Bona R, Koller M (2004) Sustainable polymer production. Polym-Plast Technol Eng 43:1779–1793

    Article  CAS  Google Scholar 

  • Brigham CJ, Sinskey AJ (2012) Applications of polyhydroxyalkanoates in the medical industry. Int J Biotechnol Wellness Ind 1:53–60

    CAS  Google Scholar 

  • Brophy MR, Deasy PB (1986) In vitro and in vivo studies on biodegradable polyester microparticles containing sulfamethizole. Int J Pharm 29:223–231

    Article  CAS  Google Scholar 

  • Cain RB (1992) Microbial degradation of synthetic polymers. In: Fry JC et al. (eds) Microbial control of pollution. 48th Symposium of the Society for General Microbiology, University of Cardiff, Cambridge University Press, Cambridge pp 293–338.

  • Campbell J, Stevens SE Jr, Bankwill DL (1982) Accumulation of poly-β-hydroxybutyrate in Spirulina platensis. J Bacteriol 149:361–366

    CAS  PubMed  PubMed Central  Google Scholar 

  • Capone DG, Burns JA, Montoya JP, Subramaniam A, Mahaffey AC, Gunderson T, Michaels AF, Carpenter EJ (2005) Nitrogen fixation by Trichodesmium spp.: an important source of new nitrogen to the tropical and subtropical North Atlantic Ocean. Glob Biogeochem Cycles 19:GB2024

    Article  CAS  Google Scholar 

  • Carr NG (1966) The occurrence of poly-β-hydroxybutyrate in the blue-green alga, Chlorogloea fritschii. Biochim Biophys Acta 120:308–310

    Article  CAS  PubMed  Google Scholar 

  • Chanprateep S, Kulpreecha S (2006) Production and characterization of biodegradable terpolymer poly(3-hydroxybutyrate-3-hydroxyvalerate-4-hydroxybutyrate) by Alcaligenes sp. A-04. J Biosci Bioeng 101:51–56

    Article  CAS  PubMed  Google Scholar 

  • Chen G-Q, Wu Q (2005) The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 26:6565–6578

    Article  CAS  PubMed  Google Scholar 

  • Chen GQ, Zhang G, Park SJ, Lee SY (2001) Industrial scale production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Appl Microbiol Biotechnol 57:50–55

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Tong YW (2012) PHBV microspheres as neural tissue engineering scaffold support neuronal cell growth and axon-dendrite polarization. Acta Biomater 8:540–548

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Li S, Xiong J, Li Z, Bai J, Zhang L, Ye Q, Ouyang P, Ying H (2010) The mechanisms of citrate on regulating the distribution of carbon flux in the biosynthesis of uridine 5′-monophosphate by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 86:75–81

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Tsai Y-H, Chou I-N, Tseng S-H, Wu H-S (2014) Application of biodegradable polyhydroxyalkanoates as surgical films for ventral hernia repair in mice. Int J Polym Sci 2014:789681

    Google Scholar 

  • Cheng S, Chen GQ, Leski M, Zou B, Wang Y, Wu Q (2006) The effect of D,L-β-hydroxybutyric acid on cell death and proliferation in L929 cells. Biomaterials 27:3758–3765

    Article  CAS  PubMed  Google Scholar 

  • Choi J, Lee SY (1999) Efficient and economical recovery of poly(3-hydroxybutyrate) from recombinant Escherichia coli by simple digestion with chemicals. Biotechnol Bioeng 62:546–553

    Article  CAS  PubMed  Google Scholar 

  • Choi MH, Yoon SC (1994) Polyester biosynthesis characteristics of Pseudomonas citronellolis grown on various carbon sources, including 3-methyl-branched substrates. Appl Environ Microbiol 60:3245–3254

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ciardelli G, Chiono V (2006) Materials for peripheral nerve regeneration. Macromol Biosci 6:13–26

    Article  CAS  PubMed  Google Scholar 

  • Clarinval AM, Halleux J (2005) Classification of biodegradable polymers. In: Smith R (ed) Biodegradable polymers for industrial applications. CRC, Boca Raton, pp. 3–56

    Chapter  Google Scholar 

  • Curley JM, Hazer B, Lenz RW (1996) Production of poly(3-hydroxyalkanoates) containing aromatic substituents by Pseudomonas oleovorans. Macromolecules 29:1762–1766

    Article  CAS  Google Scholar 

  • Dai ZW, Zou XH, Chen GQ (2009) Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) as an injectable implant system for prevention of post-surgical tissue adhesion. Biomaterials 30:3075–3083

    Article  CAS  PubMed  Google Scholar 

  • Dawes EA (1992) Storage polymers in prokaryotes. In: Mohan S, Dow C, Coles JA (eds) Prokaryotic structure and function: a new perspective. Cambridge University Press, Cambridge, pp. 88–122

    Google Scholar 

  • de Koning GJM, van Bilsen HMM, Lemstra PJ, Hazenberg W, Witholt B, Preusting H, van der Galien JG, Schirmer A, Jendrossek D (1994) A biodegradable rubber by crosslinking poly(hydroxyalkanoate) from Pseudomonas oleovorans. Polymer 35:2090–2097

    Article  Google Scholar 

  • De Philippis R, Ena A, Guastini M, Sili C, Vincenzini M (1992a) Factors affecting poly-β-hydroxybutyrate accumulation in cyanobacteria and in purple non-sulfur bacteria. FEMS Microbiol Rev 103:187–194

    CAS  Google Scholar 

  • De Philippis R, Sili C, Vincenzini M (1992b) Glycogen and poly-β-hydroxybutyrate synthesis in Spirulina maxima. J Gen Microbiol 138:1623–1628

    Article  CAS  Google Scholar 

  • Divya G, Archana T, Manzano RA (2013) Polyhydroxy alkonates—a sustainable alternative to petro-based plastics. J Pet Environ Biotechnol 4:143

    Article  Google Scholar 

  • Doi Y (1990) Microbial polyesters. VCH Publishers, New York

    Google Scholar 

  • Doi Y, Abe C (1990) Biosynthesis and characterization of a new bacterial copolyester of 3-hydroxyalkanoates and 3-hydroxy-ω-chloroalkanoates. Macromolecules 23:3705–3707

    Article  CAS  Google Scholar 

  • Doi Y, Kunioka M, Nakamura Y, Soga K (1987) Biosynthesis of copolyesters in Alcaligenes eutrophus H16 from 13C-labeled acetate and propionate. Macromolecules 20:2988–2999

    Article  CAS  Google Scholar 

  • Doi Y, Tamaki A, Kunioka M, Soga K (1988) Production of copolyesters of 3-hydroxybutyrate and 3-hydroxyvalerate by Alcaligenes eutrophus from butyric and pentanoic acids. Appl Microbiol Biotechnol 28:330–334

    Article  CAS  Google Scholar 

  • Doolittle WF (1982) Molecular evolution. In: Carr NG, Whitton BA (eds) The biology of cyanobacteria. University of California Press, Berkeley, pp. 565–670

    Google Scholar 

  • Doug S (2010) Bioplastics: technologies and global markets. BCC Research Reports PLS050A.

  • Drosg B, Fritz I, Gattermayr F, Silvestrini L (2015) Photo-autotrophic production of poly(hydroxyalkanoates) in cyanobacteria. Chem Biochem Eng Q 29:145–156

    Article  CAS  Google Scholar 

  • Freier T, Kunze C, Nischan C, Kramer S, Sternberg K, Sass M, Hopt UT, Schmitz KP (2002) In vitro and in vivo degradation studies for development of a biodegradable patch based on poly(3-hydroxybutyrate). Biomaterials 23:2649–2657

    Article  CAS  PubMed  Google Scholar 

  • Fritzsche K, Lenz RW, Fuller R (1990a) An unusual bacterial polyester with a phenyl pendant group. Macromol Chem 191:1957–1965

    Article  CAS  Google Scholar 

  • Fritzsche K, Lenz RW, Fuller RC (1990b) Production of unsaturated polyesters by Pseudomonas oleovorans. Int J Biol Macromol 12:85–91

    Article  CAS  PubMed  Google Scholar 

  • Fritzsche K, Lenz WR, Fuller RC (1990c) Bacterial polyesters containing branched poly(β-hydroxyalkanoate) units. Int J Biol Macromol 12:92–101

    Article  CAS  PubMed  Google Scholar 

  • Gagnon KD, Lenz RW, Farris RJ, Fuller RC (1994a) Chemical modification of bacterial elastomers. 1. Peroxide crosslinking. Polymer 35:4358–4367

    Article  CAS  Google Scholar 

  • Gagnon KD, Lenz RW, Farris RJ, Fuller RC (1994b) Chemical modification of bacterial elastomers. 2. Sulfur vulcanization. Polymer 35:4368–4375

    Article  CAS  Google Scholar 

  • Galego N, Miguens FC, Sanchez R (2002) Physical and functional characterization of PHA SCL membranes. Polymer 43:3109–3114

    Article  CAS  Google Scholar 

  • Gibson J (1981) Movement of acetate across the cytoplasmic membrane of the unicellular cyanobacteria Synechococcus and Aphanocapsa. Arch Microbiol 130:175–179

    Article  CAS  Google Scholar 

  • Goldberg ED (1995) The health of the oceans - a 1994 update. Chem Ecol 10:3–8

  • Goldberg ED (1997) Plasticizing the sea-floor: an overview. Environ Technol 18:195–202

  • Gould PL, Holland SJ, Tighe BJ (1987) Polymers for biodegradable medical devices. 4-hydroxybutyrate-valerate copolymers as non-disintegrating matrices for controlled-release oral dosage forms. Int J Pharm 38:231–237

    Article  CAS  Google Scholar 

  • Gursel I, Yagmurlu F, Korkusuz F, Hasirci V (2002) In vitro antibiotic release from poly(3-hydroxybutyrate-co-3-hydroxyvalerate) rods. J Microencapsul 19:153–164

    Article  CAS  Google Scholar 

  • Haase S, Huchzermeyer B, Rath T (2012) PHB accumulation in Nostoc muscorum under different carbon stress situations. J Appl Phycol 24:157–162

    Article  CAS  Google Scholar 

  • Hahn SK, Chang YK, Lee SY (1995) Recovery and characterization of poly(3-hydroxybutyric acid) synthesized in Alcaligenes eutrophus and recombinant Escherichia coli. Appl Environ Microbiol 61:34–39

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hai T, Hein S, Steinbüchel A (2001) Multiple evidence for widespread and general occurrence of type-III PHA synthases in cyanobacteria and molecular characterization of the PHA synthases from two thermophilic cyanobacteria: Chlorogloeopsis fritschii PCC 6912 and Synechococcus sp. strain MA19. Microbiology 147:3047–3060

    Article  CAS  PubMed  Google Scholar 

  • Handrick R, Reinhardt S, Jendrossek D (2000) Mobilization of poly(3-hydroxybutyrate) in Ralstonia eutropha. J Bacteriol 182:5916–5918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen J (1990) Draft position statement on plastic debris in marine environments. Fisheries 15:16–17

  • Hauf W, Schlebusch M, Hüge J, Kopka J, Hagemann M, Forchhammer K (2013) Metabolic changes in Synechocystis PCC6803 upon nitrogen-starvation: excess NADPH sustains polyhydroxybutyrate accumulation. Metabolites 3:101–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hazari A, Johansson-Rudén G, Junemo-Bostrom K, Ljungberg C, Terenghi G, Green C, Wiberg M (1999) A new resorbable wrap-around implant as an alternative nerve repair technique. J Hand Surg 24:291–295

    Article  CAS  Google Scholar 

  • Hazer B, Lenz RW, Fuller RC (1994) Biosynthesis of methylbranched poly(β-hydroxyalkanoate)s by Pseudomonas oleovorans. Macromolecules 27:45–49

    Article  CAS  Google Scholar 

  • Hazer DB, Kiliçay E, Hazer B (2012) Poly(3-hydroxyalkanoate)s: diversification and biomedical applications: a state of the art review. Mater Sci Eng C 32:637–647

    Article  CAS  Google Scholar 

  • Huisman GW, de Leeuw O, Eggink G, Witholt B (1989) Synthesis of poly-3-hydroxyalkanoates is a common feature of fluorescent pseudomonads. Appl Environ Microbiol 55:1949–1954

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huntley ME, Redalje DG (2007) CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitigat Adapt Strat Global Change 12:573–608

    Article  Google Scholar 

  • Juntarajumnong W, Eaton-Rye JJ, Incharoensakdi A (2007) Two-component signal transduction in Synechocystis sp. PCC 6803 under phosphate limitation: role of acetyl phosphate. J Biochem Mol Biol 40:708–714

    CAS  PubMed  Google Scholar 

  • Kassab AC, Xu K, Denkbas EB, Dou Y, Zhao S, Piskin E (1997) Rifampicin carrying polyhydroxybutyrate microspheres as a potential chemoembolization agent. J Biomater Sci Polym Ed 8:947–961

    Article  CAS  PubMed  Google Scholar 

  • Kato M, Bao HJ, Kang C-K, Fukui T, Doi Y (1996) Production of novel copolyester of 3-hydroxybutyric acid and medium-chain-length 3-hydroxyalkanoic acids by Pseudomonas sp. 61-3 from sugars. Appl Microbiol Biotechnol 45:363–370

    Article  CAS  Google Scholar 

  • Kessler B, Kraak MN, Ren Q, Klinke S, Prieto M, Witholt B (1998) Enzymology and molecular genetics of PHA mcl biosynthesis. In: Steinbüchel A (ed) Biochemical principles and mechanisms of biosynthesis and degradation of polymers. Wiley-VCH, Weinheim, pp. 48–56

    Google Scholar 

  • Khan SA, Rashmi, Hussain MZ, Prasad S, Banerjee UC (2009) Prospects of biodiesel production from microalgae in India. Renew Sust Energ Rev 13:2361–2372

    Article  CAS  Google Scholar 

  • Kim OY, Gross RA, Rutherford DR (1995) Bioengineering of poly(β-hydroxyalkanoates) for advanced material applications: incorporation of cyano and nitrophenoxy side chain substituents. Can J Microbiol 41:32–43

    Article  CAS  Google Scholar 

  • Kim YB, Lenz RW, Fuller RC (1991) Preparation and characterization of poly(β-hydroxyalkanoates) obtained from Pseudomonas oleovorans grown with mixtures of 5-phenylvaleric acid and n-alkanoic acids. Macromolecules 24:5256–5360

    Article  CAS  Google Scholar 

  • Kim YB, Lenz RW, Fuller RC (1992) Poly(β-hydroxyalkanoate) copolymers containing brominated repeating units produced by Pseudomonas oleovorans. Macromolecules 25:1852–1857

    Article  CAS  Google Scholar 

  • Knowles JC, Hastings GW, Ohta H, Niwa S, Boeree N (1992) Development of a degradable composite for orthopaedic use: in vivo biomechanical and histological evaluation of two bioactive degradable composites based on the polyhydroxybutyrate polymer. Biomaterials 13:491–496

    Article  CAS  PubMed  Google Scholar 

  • Koksharova O, Wolk C (2002) Genetic tools for cyanobacteria. Appl Microbiol Biotechnol 58:123–137

    Article  CAS  PubMed  Google Scholar 

  • Koller M, Maršálek L (2015) Cyanobacterial polyhydroxyalkanoate production: status quo and quo vadis? Curr Biotechnol 4:464–480

    Article  CAS  Google Scholar 

  • Konopka A, Schnur M (1981) Biochemical composition and photosynthetic carbon metabolism of nutrient limited cultures of Merismopedia tenuissima (Cyanophyceae). J Phycol 17:118–122

    Article  CAS  Google Scholar 

  • Koosha F, Muller RH, Davis SS (1989) Polyhydroxybutyrate as a drug carrier. CRC Crit Rev Ther Drug Carrier Syst 6:117–130

    CAS  Google Scholar 

  • Kostopoulos L, Karring T (1994) Guided bone regeneration in mandibular defects in rats using a bioresorbable polymer. Clin Oral Implan Res 5:66–74

    Article  CAS  Google Scholar 

  • Kumar A, Srivastava JK, Mallick N, Singh AK (2015) Commercialization of bacterial cell factories for the sustainable production of polyhydroxyalkanoate thermoplastics: progress and prospects. Recent Pat Biotechnol 9:4–21

    Article  CAS  PubMed  Google Scholar 

  • Lageveen RG, Huisman GW, Preusting H, Ketelaar P, Eggink G, Witholt B (1988) Formation of polyesters by Pseudomonas oleovorans: effect of substrates on formation and composition of poly(R)-3-hydroxyalkanoates and poly(R)-3-hydroxyalkenoates. Appl Environ Microbiol 54:2924–2932

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lama L, Nicolaus B, Calandrelli V, Maria MC, Romano I, Gambacorta A (1996) Effect of growth conditions on endo- and exopolymer biosynthesis in Anabaena cylindrica 10C. Phytochemistry 42:655–659

    Article  CAS  Google Scholar 

  • Lawford HG, Rousseau JD (1993) Effects of pH and acetic acid on glucose and xylose metabolism by a genetically engineered ethanologenic Escherichia coli. Appl Biochem Biotechnol 39:301–322

    Article  PubMed  Google Scholar 

  • Lee B, Pometto AL III, Fratzke A, Bailey TB (1991) Biodegradation of degradable plastic polyethylene by Phanerochaete and Streptomyces species. Appl Environ Microbiol 57:678–685

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee IY, Kim MK, Chang HN, Park YH (1995) Regulation of poly-β-hydroxybutyrate biosynthesis by nicotinamide nucleotides in Alcaligenes eutrophus. FEMS Microbiol Lett 131:35–39

    CAS  Google Scholar 

  • Lee SY (1996) Bacterial polyhydroxyalkanoates. Biotechnol Bioengg 49:1–14

    Article  CAS  Google Scholar 

  • Lee SY, Choi J (1998) Effect of fermentation performance on the economics of poly(3-hydroxybutyrate) production by Alcaligenes latus. Polym Degrad Stab 59:387–393

    Article  CAS  Google Scholar 

  • Lee SY, Hong SH, Park SJ, van Wegen R, Middelberg APJ (2001) Metabolic flux analysis on the production of poly(3-hydroxybutyrate). In: Doi Y, Steinbüchel A (eds) Polyesters I: Biological Systems and Biotechnological Production. Wiley VCH, pp 249–261.

  • Lee SY, Park SJ (2002) Biosynthesis and fermentative production of SCL-MCL-PHAs. In: Doi Y, Steinbüchel A (eds) Biopolymers Vol. 3a. Wiley/VCH, Weinheim, pp. 317–336

    Google Scholar 

  • Lee W-H, Loo C-Y, Nomura CT, Sudesh K (2008) Biosynthesis of polyhydroxyalkanoate co-polymers from mixtures of plant oils and 3-hydroxyvalerate precursors. Biores Technol 99:6844–6851

    Article  CAS  Google Scholar 

  • Lenz RW, Kim YB, Fuller RC (1992) Production of unusual bacterial polyesters by Pseudomonas oleovorans through cometabolism. FEMS Microbiol Rev 103:207–214

    Article  CAS  Google Scholar 

  • Li H, Chang J (2005) Preparation, characterization and in vitro release of gentamicin from PHBV/wollastonite composite microspheres. J Control Release 107:463–473

    Article  CAS  PubMed  Google Scholar 

  • Li X, Chang H, Luo H, Wang Z, Zheng G, Lu X, He X, Chen F, Wang T, Liang J, Xu M (2015) Poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) scaffolds coated with PhaP-RGD fusion protein promotes the proliferation and chondrogenic differentiation of human umbilical cord mesenchymal stem cells in vitro. J Biomed Mater Res A 103:1169–1175

    Article  PubMed  CAS  Google Scholar 

  • Lizarraga-Valderrama LR, Nigmatullin R, Taylor C, Haycock JW, Claeyssens F, Knowles JC, Roy I (2015) Nerve tissue engineering using blends of poly(3-hydroxyalkanoates) for peripheral nerve regeneration. Eng Life Sci 15:612–621

    Article  CAS  Google Scholar 

  • López NI, Floccari ME, García AF, Steinbüchel A, Méndez BS (1995) Effect of poly(3-hydroxybutyrate) content on the starvation survival of bacteria in natural waters. FEMS Microbiol Ecol 16:95–102

    Article  Google Scholar 

  • Lu J, Tappel RC, Nomura CT (2009) Mini-review: biosynthesis of poly(hydroxyalkanoates). Polym Rev 49:226–248

    Article  CAS  Google Scholar 

  • Lu X, Wang L, Yang Z, Lu H (2013) Strategies of polyhydroxyalkanoates modification for the medical application in neural regeneration/nerve tissue engineering. Adv Biosci Biotechnol 4:731–740

    Article  CAS  Google Scholar 

  • Luzier WD (1992) Materials derived from biomass/biodegradable materials. Proc Natl Acad Sci 89:839–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynd LR, Wyman CE, Gerngross TU (1999) Biocommodity engineering. Biotechnol Prog 15:777–793

    Article  CAS  PubMed  Google Scholar 

  • M&M (2013) Global Trends and Forecasts to 2018—Polyhydroxyalkanoate market, by application (packaging, food services, bio-medical, agriculture) and raw material. Retrieved from http://www.marketsandmarkets.com

  • Madison LL, Huisiman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63:21–53

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mallick N, Gupta S, Panda B, Sen R (2007b) Process optimization for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) co-polymer production by Nostoc muscorum. Biochem Eng J 37:125–130

    Article  CAS  Google Scholar 

  • Mallick N, Sharma L, Singh AK (2007a) Poly-β-hydroxybutyrate accumulation in Nostoc muscorum: effects of metabolic inhibitors. J Plant Physiol 164:312–317

    Article  CAS  PubMed  Google Scholar 

  • Malm T, Bowald S, Karacagil S, Bylock A, Busch C (1992) A new biodegradable patch for closure of atrial septal defect: an experimental study. Scand J Thorac Cardiovasc Surg 26:9–14

    Article  CAS  PubMed  Google Scholar 

  • Masamune S, Walsh CT, Sinskey AJ, Peoples OP (1989) Poly-(R)3-hydroxybutyrate (PHB) biosynthesis: mechanistic studies on the biological Claisen condensation catalyzed by β-ketoacyl thiolase. Pure Appl Chem 61:303–312

    Article  CAS  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232

    Article  CAS  Google Scholar 

  • Matin A, Veldhuis C, Stegeman V, Veenhuis M (1979) Selective advantage of a Spirillum sp. in a carbon-limited environment: accumulation of poly-β-hydroxybutyric acid and its role in starvation. J Gen Microbiol 112:349–355

    Article  CAS  PubMed  Google Scholar 

  • Matsusaki H, Abe H, Doi Y (2000) Biosynthesis and properties of poly(3-hydroxybutyrate-co-3-hydroxyalkanoates) by recombinant strains of Pseudomonas sp. 61-3. Biomacromolecules 1:17–22

    Article  CAS  PubMed  Google Scholar 

  • Mikova G, Chodak I (2006) Properties and modification of poly(3-hydroxybutanoate). Chem List 100:1075–1083

    CAS  Google Scholar 

  • Mitsui A, Kumazawa S, Takahashi A, Ikemoto H, Cao S, Arai T (1986) Strategy by which nitrogen-fixing unicellular cyanobacteria grow photoautotrophically. Nature 323:720–722

    Article  CAS  Google Scholar 

  • Miyake M, Erata M, Asada Y (1996) A thermophilic cyanobacterium, Synechococcus sp. MA19, capable of accumulating poly-β-hydroxybutyrate. J Ferment Bioengg 82:512–514

    Article  CAS  Google Scholar 

  • Miyake M, Kataoka K, Shirai M, Asada Y (1997) Control of poly-β-hydroxybutyrate synthase mediated by acetyl phosphate in cyanobacteria. J Bacteriol 179:5009–5013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrison SS, Mullineaux CW, Ashby MK (2005) The influence of acetyl phosphate on DspA signalling in the cyanobacterium Synechocystis sp. PCC 6803. BMC Microbiol 5:47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moskowitz GJ, Merrick JM (1969) Metabolism of poly-β-hydroxybutyrate II. Enzymatic synthesis of D(−)-β-hydroxybutyryl coenzyme-A by an enoylhydrases from Rhodospirillum rubrum. Biochemistry 8:2748–2755

    Article  CAS  PubMed  Google Scholar 

  • Muller R-J, Kleeberg I, Deckwer W-D (2001) Biodegradation of polyesters containing aromatic constituents. J Biotechnol 86:87–95

    Article  CAS  PubMed  Google Scholar 

  • Nishioka M, Nakai K, Miyake M, Asada Y, Taya M (2001) Production of poly-β-hydroyxybutyrate by thermophilic cyanobacterium, Synechococcus sp. MA19, under phosphate limitation. Biotechnol Lett 23:1095–1099

    Article  CAS  Google Scholar 

  • Nomura CT, Taguchi K, Gan Z, Kuwabara K, Tanaka T, Takase K, Doi Y (2005) Expression of 3-ketoayl-acyl carrier protein reductase (fabG) genes enhanced production of polyhydroxyalkanoates copolymer from glucose in recombinant Escherichia coli JM109. Appl Environ Microbio 71:4297–4306

    Article  CAS  Google Scholar 

  • Oeding V, Schlegel HG (1973) β-ketothiolase from Hydrogenomonas eutropha HI6 and its significance in the regulation of poly-β-hydroxybutyrate metabolism. Biochem J 134:239–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ojumu TV, Yu J, Solomon BO (2004) Production of polyhydroxyalkanoates, a bacterial biodegradable polymer. Afr J Biotechnol 3:18–24

    Article  CAS  Google Scholar 

  • Panda B (2008) Accumulation of polyhydroxyalkanoates in a unicellular cyanobacterium Synechocystis sp. PCC 6803. PhD thesis, Indian Institute of Technology, Kharagpur, India p 144

  • Panda B, Jain P, Sharma L, Mallick N (2006) Optimization of cultural and nutritional conditions for accumulation of poly-β-hydroxybutyrate in Synechocystis sp. PCC 6803. Biores Technol 97:1296–1301

    Article  CAS  Google Scholar 

  • Panda B, Mallick N (2007) Enhanced poly-β-hydroxybutyrate accumulation in a unicellular cyanobacterium, Synechocystis sp. PCC 6803. Lett Appl Microbiol 44:194–198

    Article  CAS  PubMed  Google Scholar 

  • Park SJ, Choi JI, Lee SY (2005) Short-chain-length polyhydroxyalkanoates: synthesis in metabolically engineered Escherichia coli and medical applications. J Microbiol Biotechnol 15:206–215

    CAS  Google Scholar 

  • Pearce J, Leach CK, Carr NG (1969) The incomplete tricarboxylic acid cycle in the blue-green alga Anabaena variabilis. J Gen Microbiol 55:371–378

    Article  CAS  PubMed  Google Scholar 

  • Peck M, Gebhart D, Dusserre N, McAllister TN, L’Heureux N (2012) The evolution of vascular tissue engineering and current state of the art. Cells Tissues Organs 195:144–158

    Article  CAS  PubMed  Google Scholar 

  • Photon Systems Instruments (2015): http://www.psi.cz/products/photobioreactors/

  • Poirier Y (1999) Production of new polymeric compounds in plants. Curr Opin Biotechnol 10:181–185

    Article  CAS  PubMed  Google Scholar 

  • Poirier Y (2002) Polyhydroxyalkanoate synthesis in plants as a tool for biotechnology and basic studies of lipid metabolism. Progr Lip Res 41:131–135

    Article  CAS  Google Scholar 

  • Poirier Y, Nawrath C, Somerville C (1995) Production of polyhydroxyalkanoates, a family of biodegradable plastics and elastomers, in bacteria and plants. Biotechnology 13:142–150

    Article  CAS  PubMed  Google Scholar 

  • Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648

    Article  CAS  PubMed  Google Scholar 

  • Rathbone S, Furrer P, Luebben J, Zinn M, Cartmell S (2009) Biocompatibility of polyhydroxyalkanoate as a potential material for ligament and tendon scaffold material. J Biomed Mater Res 93:1391–1403

    Google Scholar 

  • Ravenstijn JTJ (2010) The state-of-the art on bioplastics: products, markets, trends and technologies. Polymedia, Lüdenscheid

  • Ray SS, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st Century materials world. Prog Mater Sci 50:962–1079

    Article  CAS  Google Scholar 

  • Reddy CSK, Ghai R, Rashmi KVC (2003) Polyhydroxyalkanoates: an overview. Biores Technol 87:137–146

    Article  CAS  Google Scholar 

  • Researchbeam (2012) Global polyhydroxyalkanoate market (sources, applications, geography)—size, share, global trends, company profiles, demand, insights, analysis, research, report, opportunities, segmentation and forecast, 2012–2020. Retrieved from http://www.researchbeam.com/polyhydroxyalkanoate-market

  • Richmond A (1999) Physiological principles and modes of cultivation in mass production of photoautotrophic microalgae. In: Cohen Z (ed) Chemicals from microalgae. Taylor and Francis, London, pp. 353–386

    Google Scholar 

  • Rippka R, Neilson A, Kunisawa R, Cohen-Bazire G (1971) Nitrogen fixation by unicellular blue-green algae. Arch Mikrobiol 76:341–348

    Article  CAS  PubMed  Google Scholar 

  • Rivard C, Moens L, Roberts K, Brigham J, Kelley S (1995) Starch esters as biodegradable plastics: Effects of ester group chain length and degree of substitution on anaerobic biodegradation. Enzyme Microb Tech 17:848–852

  • Rossi S, Azghani AO, Omri A (2004) Antimicrobial efficacy of a new antibiotic-loaded poly(hydroxybutyric-co-hydroxyvaleric acid) controlled release system. J Antimicrob Chemother 54:1013–1018

    Article  CAS  PubMed  Google Scholar 

  • Ryan PG (1987) The origin and fate of artefacts stranded on islands in the African sector of the Southern Ocean. Environ Conserv 14:341–346

  • Salmond CV, Kroll RG, Booth IR (1984) The effect of food preservatives on pH homeostasis in Escherichia coli. J Gen Microbiol 130:2845–2850

    CAS  PubMed  Google Scholar 

  • Samantaray S, Mallick N (2012) Production and characterization of poly-β-hydroxybutyrate (PHB) polymer from Aulosira fertilissima. J Appl Phycol 24:803–814

    Article  CAS  Google Scholar 

  • Samantaray S, Mallick N (2014) Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) co-polymer by the diazotrophic cyanobacterium Aulosira fertilissima CCC 444. J Appl Phycol 26:237–245

    Article  CAS  Google Scholar 

  • Samantaray S, Mallick N (2015) Impact of various stress conditions on poly-β-hydroxybutyrate (PHB) accumulation in Aulosira fertilissima CCC 444. Curr Biotechnol 4:366–372

  • Sánchez RJ, Schripsema J, da Silva LF, Taciro MK, Pradella JGC, Gomez JGC (2003) Medium-chain-length polyhydroxyalkanoic acids (PHAmcl) produced by Pseudomonas putida IPT 046 from renewable sources. Eur Polym J 39:1385–1394

    Article  CAS  Google Scholar 

  • Sankhla SS, Bhati R, Singh AK, Mallick N (2010) Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) co-polymer production from a local isolate, Brevibacillus invocatus MTCC 9039. Bioresour Technol 101:1947–1953

    Article  CAS  PubMed  Google Scholar 

  • Sato T, Usui S, Tsuchiya Y, Konda Y (2006) Invention of outdoor closet type photobioreactor for microalgae. Energy Convers Manag 47:791–799

    Article  CAS  Google Scholar 

  • Savenkova L, Gercberga Z, Bibers I, Kalnin M (2000) Effect of 3-hydroxy valerate content on some physical and mechanical properties of polyhydroxyalkanoates produced by Azotobacter chroococcum. Process Biochem 36:445–450

    Article  CAS  Google Scholar 

  • Schembri MA, Bayly RC, Davies JK (1995) Phosphate concentration regulates transcription of the Acinetobacter polyhydroxyalkanoic acid biosynthetic genes. J Bacteriol 177:4501–4507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senior PJ, Dawes EA (1973) The regulation of poly-β-hydroxybutyrate metabolism in Azotobacter beijerinckii. Biochem J 134:225–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sevastianov VI, Perova NV, Shishatskaya EI, Kalacheva GS, Volova TG (2003) Production of purified polyhydroxyalkanoates (PHAs) for applications in contact with blood. J Biomater Sci Polym Ed 14:1029–1042

    Article  CAS  PubMed  Google Scholar 

  • Shang L, Jiang M, Chang HN (2003) Poly(3-hydroxybutyrate) synthesis in fed-batch culture of Ralstonia eutropha with phosphate limitation under different glucose concentrations. Biotechnol Lett 25:1415–1419

    Article  CAS  PubMed  Google Scholar 

  • Sharma L, Mallick N (2005a) Accumulation of poly-β-hydroxybutyrate in Nostoc muscorum: regulation by pH, light-dark cycles, N and P status and carbon sources. Biores Technol 96:1304–1310

    Article  CAS  Google Scholar 

  • Sharma L, Mallick N (2005b) Enhancement of poly-β-hydroxybutyrate accumulation in Nostoc muscorum under mixotrophy, chemoheterotrophy and limitations of gas-exchange. Biotechnol Lett 27:59–62

    Article  CAS  PubMed  Google Scholar 

  • Sharma L, Panda B, Singh AK, Mallick N (2006) Studies on poly-β-hydroxybutyrate synthase activity of Nostoc muscorum. J Gen Appl Microbiol 52:209–214

    Article  CAS  PubMed  Google Scholar 

  • Sharma L, Singh AK, Panda B, Mallick N (2007) Process optimization for poly-β-hydroxybutyrate production in a nitrogen fixing cyanobacterium, Nostoc muscorum using response surface methodology. Bioresour Technol 98:987–993

    Article  CAS  PubMed  Google Scholar 

  • Shishatskaya EI, Voinova ON, Goreva AV, Mogilnaya OA, Volova TG (2008) Biocompatibility of polyhydroxybutyrate microspheres: in vitro and in vivo evaluation. J Mater Sci Mater Med 19:2493–2502

    Article  CAS  PubMed  Google Scholar 

  • Shishatskaya EI, Volova TG, Efremov SN, Puzyr’ AP, Mogil’naya OA (2002) Tissue response to biodegradable suture threads made of polyhydroxyalkanoates. Biomed Eng 36:210–217

    Article  Google Scholar 

  • Shrivastav A, Kim HY, Kim YR (2013) Advances in the applications of polyhydroxyalkanoate nanoparticles for novel drug delivery system. Biomed Res Int 2013:581684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh AK, Bhati R, Mallick N (2015) Pseudomonas aeruginosa MTCC 7925 as a biofactory for production of the novel SCL-LCL- PHA thermoplastic from non-edible oils. Curr Biotechnol 4:65–74

    Article  CAS  Google Scholar 

  • Singh AK, Bhati R, Samantaray S, Mallick N (2013) Pseudomonas aeruginosa MTCC 7925: producer of a novel SCL-LCL-PHA co-polymer. Curr Biotechnol 2:81–88

    Article  CAS  Google Scholar 

  • Singh AK, Mallick N (2008) Enhanced production of SCL-LCL-PHA co-polymer by sludge-isolated Pseudomonas aeruginosa MTCC 7925. Lett Appl Microbiol 46:350–357

    Article  CAS  PubMed  Google Scholar 

  • Singh AK, Mallick N (2009a) Exploitation of inexpensive substrates for production of a novel SCL–LCL-PHA co-polymer by Pseudomonas aeruginosa MTCC 7925. J Ind Microbiol Biotechnol 36:347–354

    Article  CAS  PubMed  Google Scholar 

  • Singh AK, Mallick N (2009b) SCL-LCL-PHA copolymer production by a local isolate, Pseudomonas aeruginosa MTCC 7925. Biotechnol J 4:703–711

    Article  CAS  PubMed  Google Scholar 

  • Singh AK, Mallick N (2016) Biological system as reactor for production of biodegradable thermoplastics, polyhydroxyalkanoates. In: Thangadurai D, Sangeetha J (eds) Industrial biotechnology: sustainable production and Bioresource utilization. CRC Press, Boca Raton, pp. 281–323

    Chapter  Google Scholar 

  • Smith AJ (1982) Modes of cyanobacterial carbon metabolism. In: Carr NG, Whitton BA (eds) The biology of cyanobacteria. Blackwell Scientific Publications, Oxford, pp. 47–85

    Google Scholar 

  • Smith AJ, London J, Stanier RY (1967) Biochemical basis of obligate autotrophy in blue-green algae and thiobacilli. J Bacteriol 94:972–983

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song JJ, Yoon SC (1996) Biosynthesis of novel aromatic copolyesters from insoluble 11-phenoxyundecanoic acid by Pseudomonas putida BMO1. Appl Environ Microbiol 62:536–544

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stal LJ, Heyer H, Jacobs G (1990) Occurrence and role of poly-hydroxyalkanoates in the cyanobacterium Oscillatoria limosa. In: Dawes EA (ed) Novel biodegradable microbial polymers. NATO ASI series. Kluwer Academic Publishers, Dordrecht, pp. 435–438

    Chapter  Google Scholar 

  • Steinbüchel A (1991) Polyhydroxyalkanoic acids. In: Byrom D (ed) Biomaterials: novel materials from biological sources. Stockton, New York, pp. 124–213

    Google Scholar 

  • Steinbüchel A, Hustede E, Liebergesell M, Pieper U, Timm A, Valentin H (1992) Molecular basis for biosynthesis and accumulation of polyhydroxyalkanoic acids in bacteria. FEMS Microbiol Rev 103:217–230

    Article  Google Scholar 

  • Steinbüchel A, Lutke-Eversloh T (2003) Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochem Eng J 16:81–96

    Article  CAS  Google Scholar 

  • Steinbüchel A, Wiese S (1992) A Pseudomonas strain accumulating polyesters of 3-hydroxybutyric acid and medium-chain-length 3-hydroxyalkanoic acids. Appl Microbiol Biotechnol 37:691–697

    Google Scholar 

  • Steinhauser D, Fernie AR, Araujo WL (2012) Unusual cyanobacterial TCA cycles: not broken just different. Trends Plant Sci 17:503–509

    Article  CAS  PubMed  Google Scholar 

  • Suriyamongkol P, Weselake R, Narine S, Moloney M, Shah S (2007) Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants—a review. Biotechnol Adv 25:148–475

    Article  CAS  PubMed  Google Scholar 

  • Takahashi T, Miyake M, Tokiwa Y, Asada Y (1998) Improved accumulation of poly-3-hydroxybutyrate by a recombinant cyanobacterium. Biotechnol Lett 20:183–186

    Article  CAS  Google Scholar 

  • Tao Y, He Y, Wu Y, Liu F, Li X, Zong W, Zhou Z (2008) Characteristics of a new photosynthetic bacterial strain for hydrogen production and its application in wastewater treatment. Int J Hydrog Energy 33:963–973

    Article  CAS  Google Scholar 

  • Toh PSY, Jau M-H, Yew S-P, Abed RMM, Sudesh K (2008) Comparison of polyhydroxyalkanoates biosynthesis, mobilization and the effects on cellular morphology in Spirulina platensis and Synechocystis sp. UNIWG J Biosci 19:21–38

    Google Scholar 

  • Tuercin F, Gursel I, Hasirci V (2001) Biodegradable polyhydroxyalkanoate implants for osteomyelitis therapy: in vitro antibiotic release. J Biomater Sci Polymer Ed 12:195–207

    Article  Google Scholar 

  • Valappil SP, Boccaccini AR, Bucke C, Roy I (2007) Polyhydroxyalkanoates in Gram-positive bacteria: insights from the genera Bacillus and Streptomyces. Antonie Van Leeuwenhoek 91:1–17

    Article  CAS  PubMed  Google Scholar 

  • Valentin HE, Steinbuuchel A (1995) Accumulation of poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid-co-4-hydroxyvaleric acid) by mutants and recombinant strains of Alcaligenes eutrophus. J Environ Polym Degr 3:169–175

  • Verlinden RAJ, Hill DJ, Kenward MA, Williams CD, Radecka I (2007) Bacterial synthesis of biodegradable polyhydroxyalkanoates. J Appl Microbiol 102:1437–1449

    Article  CAS  PubMed  Google Scholar 

  • Verma NK, Khanna SK, Kapila B (2007) Comprehensive chemistry XII. Laxi Publications Pvt. Ltd., 113, Golden house, Daryaganj, New Delhi, pp. 1581–1608

  • Vincenzini M, De Philippis R (1999) Polyhydroxyalkanoates. In: Cohen Z (ed) Chemicals from microalgae. Taylor and Francis Inc., USA, pp. 292–312

    Google Scholar 

  • Volova TG, Shishatskaya EI, Sevastianov VI, Efremov S, Mogilnaya O (2003) Results of biomedical investigations of PHB and PHB/PHV fibers. Biochem Eng J - Biopolymers 16:125–133

    Article  CAS  Google Scholar 

  • Wang B, Pugh S, Nielsen DR, Zhang W, Meldrum DR (2013) Engineering cyanobacteria for photosynthetic production of 3-hydroxybutyrate directly from CO2. Metab Eng 16:68–77

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Wang ZH, Shen CY, You ML, Xiao JF, Chen GQ (2010) Differentiation of human bone marrow mesenchymal stem cells grown in terpolyesters of 3-hydroxyalkanoates scaffolds into nerve cells. Biomaterials 31:1691–1698

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Bian YZ, Wu Q, Chen GQ (2008a) Evaluation of three-dimensional scaffolds prepared from poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) for growth of allogeneic chondrocytes for cartilage repair in rabbits. Biomaterials 29:2858–2868

    Article  CAS  PubMed  Google Scholar 

  • Wang ZH, Wu HN, Chen J, Zhang J, Chen GQ (2008b) A novel self-cleaving phasin tag for purification of recombinant proteins based on hydrophobic nanoparticles. Lab Chip 8:1957–1962

    Article  CAS  PubMed  Google Scholar 

  • Wei X, Hu YJ, Xie WP, Lin RL, Chen GQ (2009) Influence of poly(3hydroxybutyrate-co-4-hydroxybutyrate-co-3-hydroxyhexanoate) on growth and osteogenic differentiation of human bone marrow derived mesenchymal stem cells. J Biomed Mater Res A 90:894–905

    Article  PubMed  CAS  Google Scholar 

  • Weiner RM (1997) Biopolymers from marine prokaryotes. Trends Biotechnol 15:390–394

    Article  CAS  PubMed  Google Scholar 

  • Williams SF, Martin DP (2002) Applications of PHAs in medicine and pharmacy. Biopolymers 4:91–127

    CAS  Google Scholar 

  • Witt U, Muller R-J, Deckwer W-D (1997) Biodegradation behaviour and material properties of aliphatic/aromatic polyesters of commercial importance. J Environ Polymer Degrad l5:81–89

  • Wu GF, Shen ZY, Wu QY (2002) Modification of carbon partitioning to enhance PHB production in Synechocystis sp PCC6803. Enzym Microb Technol 30:710–715

    Article  CAS  Google Scholar 

  • Wu GF, Wu QY, Shen ZY (2001) Accumulation of poly-β-hydroxybutyrate in cyanobacterium Synechocystis sp. PCC6803. Bioresour Technol 76:85–90

    Article  CAS  PubMed  Google Scholar 

  • Wu LP, Cheng ST, Chen GQ, Xu KT (2008) Synthesis, characterization and biocompatibility of novel biodegradable poly[((R)-3-hydroxybutyrate)-block-(D,L-lactide)-block-(ε-caprolactone)] triblock copolymers. Polym Int 57:939–949

    Article  CAS  Google Scholar 

  • Xiao XQ, Zhao Y, Chen GQ (2007) The effect of 3-hydroxybutyrate and its derivatives on the growth of glial cells. Biomaterials 28:3608–3616

    Article  CAS  PubMed  Google Scholar 

  • Xiong W, Brune, Vermaas FD (2014) The γ-aminobutyric acid shunt contributes to closing the tricarboxylic acid cycle in Synechocystis sp. PCC 6803. Mol Microbiol 93:786–796

    Article  CAS  PubMed  Google Scholar 

  • Yao YC, Zhan XY, Zou XH, Wang ZH, Xiong YC, Zhang J, Chen J, Chen GQ (2008) A specific drug targeting system based on polyhydroxyalkanoate granule binding protein PhaP fused with targeted cell ligands. Biomaterials 29:4823–4830

    Article  CAS  PubMed  Google Scholar 

  • Ye C, Hu P, Ma MX, Xiang Y, Liu RG, Shang XW (2009) PHB/PHBHHx scaffolds and human adipose-derived stem cells for cartilage tissue engineering. Biomaterials 30:4401–4406

    Article  CAS  PubMed  Google Scholar 

  • You JW, Chiu HJ, Shu WJ, Don TM (2003) Influence of hydroxyvalerate content on the crystallization kinetics of poly(hydroxybutyrate-co-hydroxyvalerate). J Polym Res 10:47–54

    Article  CAS  Google Scholar 

  • Yu J, Si YT, Wong WKR (2002) Kinetics modeling of inhibition and utilization of mixed volatile fatty acids in the formation of polyhydroxyalkanoates by Ralstonia eutropha. Process Biochem 37:731–738

    Article  CAS  Google Scholar 

  • Zakaria MH, Ariffin H, Johar NAM, Abd-Aziz S, Nishida H, Shirai Y et al (2010) Biosynthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer from wild-type Comamonas sp. EB172. Polym Degrad Stab 95:1382–1386

    Article  CAS  Google Scholar 

  • Zhang H, Obias V, Gonyer K, Dennis D (1994) Production of polyhydroxalkanoates in sucrose-utilizing recombinant Escherichia coli and Klebsiella strains. Appl Environ Microbiol 60:1198–1205

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Bryant DA (2011) The tricarboxylic acid cycle in cyanobacteria. Science 334:1551–1553

    Article  CAS  PubMed  Google Scholar 

  • Zhang XJ, Luo RC, Wang Z, Deng Y, Chen GQ (2009) Applications of (R)-3-hydroxyalkanoate methyl esters derived from microbial polyhydroxyalkanoates as novel biofuel. Biomacromolecules 10:707–711

    Article  CAS  PubMed  Google Scholar 

  • Zinn M, Witholt B, Egli T (2001) Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoates. Adv Drug Deliv Rev 53:5–21

    Article  CAS  PubMed  Google Scholar 

  • Zittelli GC, Biondi N, Rodolfi L, Tredici MR (2013) Photobioreactors for mass production of microalgae. In: Richmond A, Hu Q (eds) Handbook of microalgal culture. Applied phycology and biotechnology. Wiley Blackwell, Oxford, pp. 225–266

    Chapter  Google Scholar 

  • Zou XH, Li HM, Wang S, Leski M, Yao YC, Yang XD, Huang QJ, Chen GQ (2009) The effect of 3-hydroxybutyrate methyl ester on learning and memory in mice. Biomaterials 30:1532–1541

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhilesh Kumar Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A.K., Sharma, L., Mallick, N. et al. Progress and challenges in producing polyhydroxyalkanoate biopolymers from cyanobacteria. J Appl Phycol 29, 1213–1232 (2017). https://doi.org/10.1007/s10811-016-1006-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-016-1006-1

Keywords

Navigation