Journal of Applied Phycology

, Volume 29, Issue 1, pp 395–404 | Cite as

Thermal and PAR effects on the photosynthesis of Eucheuma denticulatum and Kappaphycus striatus (so-called Sacol strain) cultivated in shallow bottom of Bali, Indonesia

  • Iris Ann Borlongan
  • Grevo S. Gerung
  • Shigeo Kawaguchi
  • Gregory N. Nishihara
  • Ryuta Terada
Article

Abstract

Photosynthetic responses to various temperature and PAR conditions of two carrageenophytes, Eucheuma denticulatum and Kappaphycus striatus (so-called Sacol strain), cultured in shallow areas of Bali, Indonesia, were examined using dissolved oxygen measurements and pulse–amplitude-modulated (PAM) fluorometry. Net photosynthesis–irradiance (P–E) curves at 26 °C revealed that the values of P max for E. denticulatum and K. striatus were 13.76 and 5.02 μg O2 gfw −1 min−1 (12.38–15.12 and 4.55–5.50 μg O2 gfw −1 min−1, 95 % Bayesian prediction interval (BPI)), respectively. Photoinhibition was not observed even at 1000 μmol photons m−2 s−1. Gross photosynthesis and respiration characteristics over a range of temperatures (8–36 °C) revealed optimum temperature for photosynthesis to be 31.1 °C for E. denticulatum, and 31.6 °C for K. striatus. These characteristics of photosynthesis indicate that both farmed seaweeds are well adapted to the light and temperature conditions of the cultivation site. However, studies on longer timescales for photochemical efficiency, photosynthesis, and respiration are still needed to determine their limits of tolerance. We also hypothesize that higher values of photosynthetic parameters for E. denticulatum suggest that this species is relatively superior in productivity under optimal conditions, conditional on the farming method.

Keywords

Eucheuma denticulatum Kappaphycus striatus Rhodophyta Photosynthesis PAM fluorometry Seaweed cultivation 

Notes

Acknowledgments

This research was sponsored in part by a CREST (no. JAJJ110062) from Japan Science and Technology Agency (SK) and Grant-in-Aid for Scientific Research (nos. 25340012, 25450260, and 16H02939) from the Japanese Ministry of Education, Culture, Sport, and Technology (RT and GNN). All authors have provided consent. This research was part of the dissertation submitted by the first author in partial fulfillment of the PhD degree.

References

  1. Adnan H, Porse H (1987) Culture of Eucheuma cottonii and Eucheuma spinosum in Indonesia. Proc Int Seaweed Symp 12:355–358CrossRefGoogle Scholar
  2. Aguirre von Wobeser E, Figueroa F, Cabello-Pasini A (2001) Photosynthesis and growth of the red and green morphotypes of Kappaphycus alvarezii (Rhodophyta) from the Philippines. Mar Biol 138:679–686CrossRefGoogle Scholar
  3. Alexandrov GA, Yamagata Y (2007) A peaked function for modeling temperature dependence of plant productivity. Ecol Model 200:189–192CrossRefGoogle Scholar
  4. Allakhverdiev S, Kreslavski V, Klimov V, Los D, Carpentier R, Mohanty P (2008) Heat stress: an overview of molecular responses in photosynthesis. Photosynth Res 98:541–550Google Scholar
  5. Amin M, Rumayar TP, Femmi NF, Keemur D, Suwitra IK (2008) The assessment of seaweed (Eucheuma cottonii) growing practice of different systems and planting seasons in Bangkep Regency Central Sulawesi. Indones J Agri Sci 1:132–139Google Scholar
  6. Beer S, Björk M, Beardall J (2014) Photosynthesis in the Marine Environment. Wiley and Sons, IowaGoogle Scholar
  7. Borlongan IA, Luhan MRJ, Padilla PIP, Hurtado AQ (2016) Photosynthetic responses of ‘Neosiphonia sp. epiphyte-infected’ and healthy Kappaphycus alvarezii (Rhodophyta) to irradiance, salinity and pH variations. J Appl Phycol. doi: 10.1007/s10811-016-0833-4
  8. Cabello-Pasini A, Aguirre von Wobeser E, Figueroa FL (2000) Effect of solar radiation on photoinhibition of marine macrophytes in culture systems. J Photochem Photobiol 57:167–178Google Scholar
  9. Collen J, Pedersen P, Ramazanov Z, Mtolera M, Ngoile M, Semesi A (1992) Carbon assimilation of Eucheuma denticulatum. In: Mshigeni K, Bolton J, Critchley AT, Kiangi G. (eds) Proceedings of the First International Workshop on Sustainable Seaweed Resource Development in sub-Saharan Africa, Windhoek, Namibia. University of Namibia. pp. 265–273Google Scholar
  10. Collen J, Mtolera M, Abrahamsson K, Semesi A, Pedersen M (1995) Farming and physiology of the red algae Eucheuma: growing commercial importance in East Africa. Ambio 24:497–501Google Scholar
  11. Colombo-Pallotta MF, Rodríguez-Román A, Iglesias-Prieto R (2010) Calcification in bleached and unbleached Montastraea faveolata: evaluating the role of oxygen and glycerol. Coral Reefs 29:899–907CrossRefGoogle Scholar
  12. Cosgrove J, Borowitzka MA (2011) Chlorophyll fluorescence terminology: an introduction. In: Suggett DJ, Prášil O, Borowitzka MA (eds) Chlorophyll a fluorescence in aquatic sciences, methods and developments. Springer, Dordrecht, pp. 1–17Google Scholar
  13. Dawes CJ (1992) Irradiance acclimation of the cultured Philippine seaweeds, Kappaphycus alvarezii and Eucheuma denticulatum. Bot Mar 35:189–195CrossRefGoogle Scholar
  14. Dawes CJ, Mathieson AC, Cheney P (1974) Ecological studies of Floridian Eucheuma (Rhodophyta, Gigartinales). I. Seasonal growth and reproduction. Bull Mar Sci 24:235–271Google Scholar
  15. Dawes CJ, Lluisma AO, Trono GC (1994) Laboratory and field growth studies of commercial strains of Eucheuma denticulatum and Kappaphycus alvarezii in the Philippines. J Appl Phycol 6:21–24CrossRefGoogle Scholar
  16. Doty MS (1973) Farming the red seaweed, Eucheuma, for carrageenans. Micronesica 9:59–73Google Scholar
  17. Enriquez S, Borowitzka MA (2011) The use of the fluorescence signal in studies of seagrass and macroalgae. In: Suggett DJ, Prášil O, Borowitzka MA (eds) Chlorophyll a fluorescence in aquatic sciences: methods and developments. Springer, Dordrecht, pp. 187–208Google Scholar
  18. Enríquez S, Rodríguez-Román A (2006) Effect of water flow on the photosynthesis of three marine macrophytes from a fringing-reef lagoon. Mar Ecol Prog Ser 323:119–132CrossRefGoogle Scholar
  19. Figueroa FL, Salles S, Aguilera J, Jiménez C, Mercado J, Viñegla B, Flores-Moya A, Altmirano M (1997) Effects of solar radiation on photoinhibition and pigmentation in the red alga Porphyra leucosticta. Mar Ecol Prog Ser 151:81–90CrossRefGoogle Scholar
  20. Fujimoto M, Nishihara GN, Terada R (2014a) The effect of irradiance and temperature on the photosynthesis of two agarophytes Gelidium elegans and Pterocladiella tenuis (Gelidiales) from Kagoshima, Japan. Fish Sci 80:695–703CrossRefGoogle Scholar
  21. Fujimoto M, Nitta K, Nishihara GN, Terada R (2014b) Phenology, irradiance and temperature characteristics of a freshwater red alga, Nemalionopsis tortuosa (Thoreales), from Kagoshima, southern Japan. Phycol Res 62:77–85CrossRefGoogle Scholar
  22. Fujimoto M, Nishihara GN, Prathep A, Terada R (2015) The effect of irradiance and temperature on the photosynthesis of an agarophyte, Gelidiella acerosa (Gelidiales, Rhodophyta), from Krabi, Thailand. J Appl Phycol 27:1235–1242CrossRefGoogle Scholar
  23. Ganzon-Fortes ET, Azanza-Corrales R, Aliaza TT (1993) Comparison of photosynthetic responses of healthy and diseased Kappaphycus alvarezii (Doty) Doty using P vs. I curve. Bot Mar 36:503–506CrossRefGoogle Scholar
  24. Gévaert F, Creach A, Davoult D, Holl AC, Seuront L, Lemoine Y (2002) Photo-inhibition and seasonal photosynthetic performance of the seaweed Laminaria saccharina during a simulated tidal cycle: chlorophyll fluorescence measurements and pigment analysis. Plant Cell Environ 25:859–872CrossRefGoogle Scholar
  25. Glenn EP, Doty MS (1981) Photosynthesis and respiration of the tropical red seaweeds, Eucheuma striatum (Tambalang and Elkhorn varieties) and E. denticulatum. Aquat Bot 10:353–364CrossRefGoogle Scholar
  26. Glenn EP, Doty MS (1992) Water motion affects the growth rates of Kappaphycus alvarezii and related seaweeds. Aquaculture 108:233–246CrossRefGoogle Scholar
  27. Granbom M, Pedersen M, Kadel P, Lüning K (2001) Circadian rhythm of photosynthetic oxygen evolution in Kappaphycus alvarezii (Rhodophyta): dependence on light quantity and quality. J Phycol 37:1020–1025CrossRefGoogle Scholar
  28. Häder DP, Lebert M, Mercado J, Aguilera J, Salles S, Flores-Moya S, Jiméz C, Figueroa FL (1996) Photosynthetic oxygen production and PAM fluorescence in the brown alga Padina pavonica measured in the field under solar radiation. Mar Biol 127:61–66CrossRefGoogle Scholar
  29. Hayashi L, Oliveira EC, Bleicher-Lhonneur G, Boulenguer P, Pereira RTL, von Seckendorff R, Shimoda VT, Leflamand A, Vallée P, Critchley AT (2007) The effects of selected cultivation conditions on the carrageenan characteristics of Kappaphycus alvarezii (Rhodophyta, Solieriaceae) in Ubatuba Bay, São Paulo, Brazil. J Appl Phycol 19:505–511CrossRefGoogle Scholar
  30. Hayashi L, Faria GSM, Nunes BG, Zitta CS, Scariot LA, Rover T, Felix MRL, Bouzon Z (2011) Effects of salinity on the growth rate, carrageenan yield, and cellular structure of Kappaphycus alvarezii (Rhodophyta, Gigartinales) cultured in vitro. J Appl Phycol 23:439–447Google Scholar
  31. Hayashi L, Bulboa C, Kradolfer P, Soriano G, Robledo D (2013) Cultivation of red seaweeds: a Latin American perspective. J Appl Phycol 26:719–727CrossRefGoogle Scholar
  32. Henley WJ (1993) Measurement and interpretation of photosynthetic light-response curves in algae in the context of photo inhibition and diel changes. J Phycol 29:729–739CrossRefGoogle Scholar
  33. Huppertz K, Hanelt D, Nultsch W (1990) Photoinhibition of photosynthesis in the marine brown algae Fucus serratus as studied in field experiments. Mar Ecol Prog Ser 66:175–182CrossRefGoogle Scholar
  34. Hurtado AQ, Critchley AT, Trespoey A, Bleicher-Lhonneur G (2008) Growth and carrageenan quality of Kappaphycus striatus grown at different stocking densities, duration of culture and depth. J Appl Phycol 20:551–555CrossRefGoogle Scholar
  35. Hurtado AQ, Joe M, Sanares RC, Fan D, Prithiviraj B, Critchley AT (2012) Investigation of the application of Acadian marine plant extract powder (AMPEP) to enhance the growth, phenolic content, free radical scavenging, and iron chelating activities of Kappaphycus Doty (Solieriaceae, Gigartinales, Rhodophyta. J Appl Phycol 24:601–611CrossRefGoogle Scholar
  36. Hurtado AQ, Gerung GS, Yasir S, Critchley AT (2014a) Cultivation of tropical red seaweeds in the BIMP-EAGA region. J Appl Phycol 26:707–718CrossRefGoogle Scholar
  37. Hurtado AQ, Reis RP, Loureiro RR, Critchley AT (2014b) Kappaphycus (Rhodophyta) cultivation: problems and the impacts of Acadian marine plant extract powder. In: Pereira L, Neto JM (eds) Marine algae: biodiversity, taxonomy, environmental assessment, and biotechnology. CRC Press, Boca Raton, pp. 251–299Google Scholar
  38. Hurtado AQ, Neish IC, Critchley AT (2015) Developments in production technology of Kappaphycus in the Philippines: more than four decades of farming. J Appl Phycol 27:1945–1961CrossRefGoogle Scholar
  39. Hurtado-Ponce AQ (1995) Carrageenan properties and proximate composition of the three morphotypes of Kappaphycus alvarezii Doty (Gigartinales, Rhodophyta) grown at two depths. Bot Mar 38:215–219Google Scholar
  40. Jacobsen S, Lüning K, Goulard F (2003) Circadian changes in relative abundance of two photosynthetic transcripts in the marine macroalgae Kappaphycus alvarezii (Rhodophyta). J Phycol 39:888–896CrossRefGoogle Scholar
  41. Jassby AD, Platt T (1976) Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol Oceanogr 21:540–547CrossRefGoogle Scholar
  42. Kokubu S, Nishihara GN, Watanabe Y, Tsuchiya Y, Amano Y, Terada R (2015) The effect of irradiance and temperature on the photosynthesis of a native brown alga, Sargassum fusiforme (Fucales) from Kagoshima, Japan. Phycologia 54:235–247CrossRefGoogle Scholar
  43. Krishnan M, Narayanakumar R (2013) Social and economic dimensions of carrageenan seaweed farming in India. In: Valderrama D, Cai J, Hishamunda N, Ridler N (eds) Social and economic dimensions of carrageenan seaweed farming, Fish Aquacult Tech Paper 580. FAO, Rome, pp. p 163–p 185Google Scholar
  44. Largo DB, Fukami K, Nishijima T (1995) Occasional bacteria promoting ice-ice disease in the carrageenan-producing red algae Kappaphycus alvarezii and Eucheuma denticulatum (Solieriaceae, Gigartinales, Rhodophyta). J Appl Phycol 7:545–554CrossRefGoogle Scholar
  45. Lideman NGN, Noro T, Terada R (2013) Effect of temperature and light on the photosynthesis as measured by chlorophyll fluorescence of cultured Eucheuma denticulatum and Kappaphycus sp. (Sumba strain) from Indonesia. J Appl Phycol 25:399–406CrossRefGoogle Scholar
  46. Luhan MRJ, Sollesta H (2010) Growing the reproductive cells (carpospores) of the seaweed, Kappaphycus striatum, in the laboratory until outplanting in the field and maturation to tetrasporophyte. J Appl Phycol 22:579–585CrossRefGoogle Scholar
  47. Luxton DM (1993) Aspects of the farming and processing of Kappaphycus and Eucheuma in Indonesia. Hydrobiologia 260/261:365–371CrossRefGoogle Scholar
  48. Mandal SK, Ajay G, Monisha N, Malarvizhi J, Temkar G, Mantri VA (2015) Differential response of varying temperature and salinity regimes on nutrient uptake of drifting fragments of Kappaphycus alvarezii: implication on survival and growth. J Appl Phycol 27:1571–1581CrossRefGoogle Scholar
  49. Msuya FE (2013) Social and economic dimensions of carrageenan seaweed farming in the United Republic of Tanzania. In: Valderrama D, Cai J, Hishamunda N, Ridler N (eds) Social and economic dimensions of carrageenan seaweed farming, Fish Aquacult Tech Paper 580. FAO, Rome, pp 115–146Google Scholar
  50. Msuya FE, Porter M (2014) Impact of environmental changes on farmed seaweed and farmers: the case of Songo Songo Island, Tanzania. J Appl Phycol 26:2135–2141CrossRefGoogle Scholar
  51. Muñoz J, Freile-Pelegrin Y, Robledo D (2004) Mariculture of Kappaphycus alvarezii (Rhodophyta, Solieriaceae) color stains in tropical waters of Yucatan, Mexico. Aquaculture 239:161–177CrossRefGoogle Scholar
  52. Neish IC (2013) Social and economic dimensions of carrageenan seaweed farming in Indonesia. In: Valderrama D, Cai J, Hishamunda N, Ridler N (eds) Social and economic dimensions of carrageenan seaweed farming. Fish Aquacult Tech Paper 580. FAO, Rome, pp. p 61–p 89Google Scholar
  53. Nishihara GN, Terada R, Noro T (2004) Photosynthesis and growth rates of Laurencia brongniartii J. Agardh (Rhodophyta, Ceramiales) in preparation for cultivation. J Appl Phycol 16:303–308CrossRefGoogle Scholar
  54. Ohno M, Nang HQ, Hirase S (1996) Cultivation and carrageenan yield and quality of Kappaphycus alvarezii in the waters of Vietnam. J Appl Phycol 8:431–437CrossRefGoogle Scholar
  55. Paula EJ, Pereira RTL (2003) Factors affecting growth rates of Kappaphycus alvarezii (Doty) Doty ex P. Silva (Rhodophyta, Solieraceae) in subtropical waters of Sao Paulo, Brazil. Proc Int Seaweed Symp 17:381–388Google Scholar
  56. Paula EJ, Pereira RTL, Ohno M (2002) Growth rates of carrageenophyte Kappaphycus alvarezii (Rhodophyta, Gigartinales) introduced in subtropical waters of São Paulo State, Brazil. Phycol Res 50:1–9CrossRefGoogle Scholar
  57. Periyasamy C, Anantharaman P, Balasubramanian T (2014) Social upliftment of coastal fisher women through seaweed (Kappaphycus alvarezii (Doty) Doty) farming in Tamil Nadu, India. J Appl Phycol 26:775–781CrossRefGoogle Scholar
  58. Platt T, Gallegos CL, Harrison WG (1980) Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J Mar Res 38:687–701Google Scholar
  59. R Development Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org
  60. Renger G, Schreiber U (1986) Practical applications of fluorometric methods to algae and higher plant research. In: Govindjee, Amesz J, Fork DD (eds) Light emission by plants and bacteria. Academic, Orlando, pp 588–619Google Scholar
  61. Santelices B (1999) A conceptual framework for marine agronomy. Hydrobiologia 398/399:15–23Google Scholar
  62. Serisawa Y, Yokohama Y, Aruga Y, Tanaka J (2001) Photosynthesis and respiration in bladelet of Ecklonia cava Kjellman (Laminariales, Phaeophyta) in two localities with different temperature conditions. Phycol Res 49:1–11CrossRefGoogle Scholar
  63. Stan Development Team (2015) Stan: a C++ library for probability and sampling, version 2.6. URL: http://mc-stan.org
  64. Terada R, Shikada S, Watanabe Y, Nakazaki Y, Matsumoto K, Kozono J, Saino N, Nishihara GN (2016a) Effect of PAR and temperature on the photosynthesis of the Japanese alga, Ecklonia radicosa (Laminariales), based on field and laboratory measurements. Phycologia 55:178–186CrossRefGoogle Scholar
  65. Terada R, Vo TD, Nishihara GN, Shioya K, Shimada S, Kawaguchi S (2016b) The effect of irradiance and temperature on the photosynthesis and growth of a cultivated red alga Kappaphycus alvarezii (Solieriaceae) from Vietnam, based on in situ and in vitro measurements. J Appl Phycol 28:457–467CrossRefGoogle Scholar
  66. Terada R, Watanabe Y, Fujimoto M, Tatamidani I, Kokubu S, Nishihara GN (2016c) The effect of PAR and temperature on the photosynthetic performance of a freshwater red alga, Thorea gaudichaudii (Thoreales) from Kagoshima, Japan. J Appl Phycol 28:1255–1263CrossRefGoogle Scholar
  67. Thornley JHM, Johnson IR (2000) Plant and crop modelling: a mathematical approach to plant and crop physiology. Blackburn Press, Caldwell, New Jersey, 669 ppGoogle Scholar
  68. Trono GC (1990) Seaweed resources in the developing countries of Asia: production and socioeconomic implications. In: Dogma IJ, Trono GC, Tabbada RA (eds) Culture and use of algae in Southeast Asia. Proceedings of a symposium on culture and utilization of algae in Southeast Asia. 8–11 December 1981. Aquaculture Department, Southeast Asia Fisheries Development Center. Tigbauan, Iloilo, Philippines. pp 1–8Google Scholar
  69. Trono GJ (1993) Eucheuma and Kappaphycus: taxonomy and cultivation. In: Ohno M, Critchley AT (eds) Seaweed Cultivation and Marine Ranching. JICA pp 75–88Google Scholar
  70. Vásquez-Elizondo RM, Enríquez S (2016) Coralline algal physiology is more adversely affected by elevated temperature than reduced pH. Sci Rep 6:19030. doi: 10.1038/srep19030 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Vo TD, Nishihara GN, Shimada S, Watanabe Y, Fujimoto M, Kawaguchi S, Terada R (2014) Taxonomic identity and the effect of temperature and irradiance on the photosynthesis of an indoor tankcultured red alga Agardhiella subulata from Japan. Fish Sci 80:281–292Google Scholar
  72. Vo TD, Nishihara GN, Kitamura Y, Shimada S, Kawaguchi S, Terada R (2015) The effect of irradiance and temperature on the photosynthesis of Hydropuntia edulis and Hydropuntia eucheumatoides (Gracilariaceae, Rhodophyta) from Vietnam. Phycologia 54:24–31CrossRefGoogle Scholar
  73. Webb WL, Newton M, Starr D (1974) Carbon dioxide exchange of Alnus rubra: a mathematical model. Oecologia 17:281–291CrossRefGoogle Scholar
  74. World Sea Temperatures (2016) World sea temperature. URL http://www.seatemperature.org

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Iris Ann Borlongan
    • 1
  • Grevo S. Gerung
    • 2
  • Shigeo Kawaguchi
    • 3
  • Gregory N. Nishihara
    • 4
  • Ryuta Terada
    • 1
  1. 1.United Graduate School of Agricultural SciencesKagoshima UniversityKagoshimaJapan
  2. 2.Faculty of Fisheries and Marine ScienceSam Ratulangi UniversityManadoIndonesia
  3. 3.Faculty of AgricultureKyushu UniversityFukuokaJapan
  4. 4.Institute for East China Sea Research, Organization for Marine Science and TechnologyNagasaki UniversityNagasakiJapan

Personalised recommendations