Skip to main content
Log in

Comparative analyses and evaluation of the cosmeceutical potential of selected Chlorella strains

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

In the present study, aqueous extracts from eight Chlorella strains were evaluated towards selected cosmeceutical properties such as enzymatic and non-enzymatic antioxidant capacity, glutathione content, inhibition potency towards skin regulatory enzymes, and cytotoxic effect on human cell lines. The results showed that the Chlorella strains display wide catalytic diversity with different strains exhibiting quite varied antioxidant enzymatic activities. The enzymes glutathione reductase, peroxidase, and superoxide dismutase were found in all strains, whereas only Chlorella minutissima displays glutathione transferase activity. Total antioxidant capacity (TAC) measurements, using the FRAP, ABTS, and DPPH assays, indicated significant differences among strains suggesting a large chemical diversity of antioxidants in Chlorella species. Chlorella minutissima extract showed high inhibitory potency with IC50 23.3 ± 2.5 and 29.2±2.7 μg towards tyrosinase and elastase, respectively, suggesting a potential activity in controlling skin aging, inflammatory process, and pigmentation. Furthermore, the effect of C. minutissima extract on a human hepatoma cell line (Huh-7) was evaluated using cell proliferation assay and qRT-PCR to analyze the expression of marker genes (SOD1, GPx1, GPx2) involved in oxidative stress response. The results established the absence of cytotoxic effects of the aqueous extracts. SOD1, GPx1, and GPx4 expression levels showed a specific profile and appear to be slightly upregulated, downregulated, and remained unaffected, respectively. Taken together, these results demonstrate that Chlorella species can provide promising extracts rich in antioxidants, anti-aging, and skin-whitening ingredients with the potential for use as raw material in cosmetics industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akerboom TP, Sies H (1980) Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samples. Meth Enz 77:373–382

    Article  Google Scholar 

  • Antonicelli F, Bellon G, Debelle L, Hornebeck W (2007) Elastin‐elastases and inflamm‐aging. Current Top Devel Biol 79:99–155

    Article  CAS  Google Scholar 

  • Aoyama K, Nakaki T (2015) Glutathione in cellular redox homeostasis: association with the Excitatory Amino Acid Carrier 1 (EAAC1). Molecules 20:8742–8758

    Article  CAS  PubMed  Google Scholar 

  • Aremu A, Masondo N, Molnár Z, Stirk W, Ördög V, Van Staden J (2016) Changes in phytochemical content and pharmacological activities of three Chlorella strains grown in different nitrogen conditions. J Appl Phycol 28:149–159

    Article  CAS  Google Scholar 

  • Bartosz G (2010) Non-enzymatic antioxidant capacity assays: limitations of use in biomedicine. Free Radic Res 44:711–720

    Article  CAS  PubMed  Google Scholar 

  • Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the FRAP assay. Anal Biochem 239:70–76

    Article  CAS  PubMed  Google Scholar 

  • Beretta G, Facino RM (2010) Recent advances in the assessment of the antioxidant capacity of pharmaceutical drugs: from in vitro to in vivo evidence. Anal Bioanal Chem 398:67–75

    Article  CAS  PubMed  Google Scholar 

  • Bieth J, Spiess B, Wermuth CG (1974) The synthesis and analytical use of a highly sensitive and convenient substrate of elastase. Biochem Med 11:350–357

    Article  CAS  PubMed  Google Scholar 

  • Borowitzka MA (2013) High-value products from microalgae—their development and commercialisation. J Appl Phycol 25:743–756

    Article  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of pritein utilising the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Tech 28:25–30

    Article  CAS  Google Scholar 

  • Brigelius-Flohé R, Maiorino M (2013) Glutathione peroxidases. Biochim Biophys Acta 1830:3289–3303

    Article  PubMed  Google Scholar 

  • Ceccoli J, Costello B, Pillai S (2012) Marine extracts and biofermentations for use in cosmetics. US Patent 8,202,519

    Google Scholar 

  • Che M, Wang R, Li X, Wang HY, Zheng XF (2015) Expanding roles of superoxide dismutases in cell regulation and cancer. Drug Discov Today 21:143–149

    Article  PubMed  PubMed Central  Google Scholar 

  • Chemat F, Vian MA, Cravotto G (2012) Green extraction of natural products: concept and principles. Int J Mol Sci 13:8615–8627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choochote W, Suklampoo L, Ochaikul D (2014) Evaluation of antioxidant capacities of green microalgae. J Appl Phycol 26:43–48

    Article  CAS  Google Scholar 

  • Cree IA, Andreotti PE (1997) Measurement of cytotoxicity by ATP-based luminescence assay in primary cell cultures and cell lines. Toxicol In Vitro 11:553–556

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Vivancos P, De Simone A, Kiddle G, Foyer CH (2015) Glutathione-linking cell proliferation to oxidative stress. Free Radical Biol Med 89:1154–1164

    Article  CAS  Google Scholar 

  • Duckworth HW, Coleman JE (1970) Physicochemical and kinetic properties of mushroom tyrosinase. J Biol Chem 245:1613–1625

    CAS  PubMed  Google Scholar 

  • Freitas AC, Pereira L, Rodrigues D, Carvalho AP, Panteleitchouk T, Gomes AM, Duarte AC (2015) Marine functional foods. In: Kim S-K (ed) Springer handbook of marine biotechnology. Springer, Heidelberg, pp 989–994

    Google Scholar 

  • Gellenbeck K (2012) Utilization of algal materials for nutraceutical and cosmeceutical applications—what do manufacturers need to know? J Appl Phycol 24:309–313

    Article  Google Scholar 

  • Goiris K, Muylaert K, Fraeye I, Foubert I, De Brabanter J, De Cooman L (2012) Antioxidant potential of microalgae in relation to their phenolic and carotenoid content. J Appl Phycol 24:1477–1486

    Article  CAS  Google Scholar 

  • Grosso C, Valentão P, Ferreres F, Andrade PB (2015) Alternative and efficient extraction methods for marine-derived compounds. Mar Drugs 13:3182–3230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hajimahmoodi M, Faramarzi M, Mohammadi N, Soltani N, Oveisi M, Hamed I, Ozogul F, Ozogul Y, Regenstein JM (2015) Marine bioactive compounds and their health benefits: a review. Comp Rev Food Sci Food Saf 14:446–465

    Article  Google Scholar 

  • Harnedy PA, Fitzgerald RJ (2013) Bioactive proteins and peptides from macroalgae, fish, shellfish and marine processing waste. In: Kim S-K (ed) Marine proteins and peptides: biological activities and applications. Wiley, Chichester

    Google Scholar 

  • Henriksen PA (2014) The potential of neutrophil elastase inhibitors as anti-inflammatory therapies. Curr Opin Hematol 21:23–28

    Article  CAS  PubMed  Google Scholar 

  • Huss VAR, Frank C, Hartmann EC, Hirmer M, Kloboucek A, Seidel BM, Wenzler P, Kessler E (1999) Biochemical taxonomy and molecular phylogeny of the genus Chlorella sensu lato (Chlorophyta). J Phycol 35:587–598

    Article  CAS  Google Scholar 

  • Ibañez E, Cifuentes A (2013) Benefits of using algae as natural sources of functional ingredients. J Sci Food Agric 93:703–709

    Article  PubMed  Google Scholar 

  • Imokawa G, Ishida K (2015) Biological mechanisms underlying the ultraviolet radiation-induced formation of skin wrinkling and sagging I: reduced skin elasticity, highly associated with enhanced dermal elastase activity, triggers wrinkling and sagging. Int J Mol Sci 16:7776–7795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itakura H, Kobayashi M, Nakamura S (2015) Chlorella ingestion suppresses resistin and related genes’ expression in peripheral blood cells of borderline diabetics. Clinical Nutr ESPEN 10:e95–e101

    Article  Google Scholar 

  • Jiménez-Escrig A, Rincón M, Pulido R, Saura-Calixto F (2001) Guava fruit (Psidium guajava L.) as a new source of antioxidant dietary fiber. J Agric Food Chem 49:5489–5493

    Article  PubMed  Google Scholar 

  • Kalina T, Puncochárová M (1987) Taxonomy of the subfamily Scotiellocystoideae Fott 1976 (Chlorellaceae, Chlorophyceae). Algol Stud 45:473–521

    Google Scholar 

  • Kamagaju L, Morandini R, Bizuru E, Nyetera P, Nduwayezu JB, Stévigny C, Ghanem G, Duez P (2013) Tyrosinase modulation by five Rwandese herbal medicines traditionally used for skin treatment. J Ethnopharmacol 146:824–834

    Article  CAS  PubMed  Google Scholar 

  • Keesey J (1987) Biochemica information: a revised biochemical reference source, Indianapolis, 1–242.

  • Kim KA, Cha KH, Choi SJ, Pan CH, Jung SH (2014) The extract of Chlorella vulgaris protects transformed retinal ganglion cells from oxidative stress‐induced cells death. J Food Biochem 38:129–139

    Article  Google Scholar 

  • Kim M, Park J, Song K, Kim HG, Koh JS, Boo YC (2012) Screening of plant extracts for human tyrosinase inhibiting effects. Int J Cosmet Sci 34:202–208

    Article  CAS  PubMed  Google Scholar 

  • Kim YJ, Uyama H (2005) Tyrosinase inhibitors from natural and synthetic sources: structure, inhibition mechanism and perspective for the future. Cell Mol Life Sci 62:1707–1723

    Article  CAS  PubMed  Google Scholar 

  • Labrou N, Mello L, Clonis Y (2001) Functional and structural roles of the glutathione-binding residues in maize (Zea mays) glutathione S-transferase I. Biochem J 358:101–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Labrou NE, Papageorgiou AC, Pavli O, Flemetakis E (2015) Plant GSTome: structure and functional role in xenome network and plant stress response. Curr Opin Biotechnol  32:186–194

  • Lauritano C, Andersen JH, Hansen E, Albrigtsen M, Escalera L, Esposito F, Helland K, Hanssen KØ, Romano G, Ianora A (2016) Bioactivity screening of microalgae for antioxidant, anti-inflammatory, anticancer, anti-diabetes, and antibacterial activities. Front Mar Sci 3:68

    Article  Google Scholar 

  • Leatherbarrow RJ (2010) GraFit Version 7. Erithacus Software Ltd, Horley, UK

    Google Scholar 

  • Lee KK, Kim JH, Cho JJ, Choi JD (1999) Inhibitory effects of 150 plant extracts on elastase activity, and their anti-inflammatory effects. Int J Cosmet Sci 21:71–82

    Article  CAS  PubMed  Google Scholar 

  • Leong LP, Shui G (2002) An investigation of antioxidant capacity of fruits in Singapore markets. Food Chem 76:69–75

    Article  CAS  Google Scholar 

  • Li X, Wang X, Chen D, Chen S (2011) Antioxidant activity and mechanism of protocatechuic acid in vitro. Funt Food Health Dis 7:232–244

    Google Scholar 

  • Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474

    Article  CAS  PubMed  Google Scholar 

  • Mavis RD, Stellwagen E (1968) Purification and subunit structure of glutathione reductase from bakers’ yeast. J Biol Chem 243:809–814

    CAS  PubMed  Google Scholar 

  • Mazzetti AP, Fiorile MC, Primavera A, Bello ML (2015) Glutathione transferases and neurodegenerative diseases. Neurochem Inter 82:10–18

    Article  CAS  Google Scholar 

  • Menon KR, Balan R, Suraishkumar GK (2013) Stress induced lipid production in Chlorella vulgaris: relationship with specific intracellular reactive species levels. Biotechnol Bioeng 110:1627–1636

    Article  CAS  PubMed  Google Scholar 

  • Miller NJ, Rice-Evans CA (1997) The relative contributions of ascorbic acid and phenolic antioxidants to the total antioxidant activity of orange and apple fruit juices and blackcurrant drink. Food Chem 60:331–337

    Article  CAS  Google Scholar 

  • Molyneux P (2004) The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J Sci Tech 26:211–219

    CAS  Google Scholar 

  • Müller J, Friedl T, Hepperle D, Lorenz M, Day JG (2005) Distinction between multiple isolates of Chlorella vulgaris (Chlorophyta, Trebouxiophyceae) and testing for conspecificity using amplified fragment length polymorphism and ITS rDNA sequences. J Phycol 4:1236–1247

    Article  Google Scholar 

  • Nafissi-Varcheh N (2010) Evaluation of antioxidant properties and total phenolic contents of some strains of microalgae. J Appl Phycol 22:43–50

    Article  Google Scholar 

  • Nozaki H, Katagiri M, Nakagawa M, Aizawa K, Watanabe MM (1995) Taxonomic re-examination of the two strains labeled “Chlorella” in the Microbial Culture Collection at the National Institute for Environmental Studies (NIES-Collection). Microbial Culture Collection 11:11–18

    Google Scholar 

  • Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clinical Med 70:158–169

    CAS  Google Scholar 

  • Pellegrini N, Serafini M, Colombi B, Del Rio D, Salvatore S, Bianchi M, Brighenti F (2003) Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays. J Nutr 133:2812–2819

    CAS  PubMed  Google Scholar 

  • Plaza M, Cifuentes A, Ibáñez E (2008) In the search of new functional food ingredients from algae. Trends Food Sci Tech 19:31–39

    Article  CAS  Google Scholar 

  • Rajkumar R, Yaakob Z (2013) The biology of microalgae. In: Bux F (ed) Biotechnological applications of microalgae: biodiesel and value added products. CRC Press, London pp 7–16

  • Ramakers C, Ruijter JM, Deprez RH, Moorman AF (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339:62–66

    Article  CAS  PubMed  Google Scholar 

  • Ramasarma T, Rao AV, Devi MM, Omkumar RV, Bhagyashree KS, Bhat SV (2015) New insights of superoxide dismutase inhibition of pyrogallol autoxidation. Mol Cell Biochem 400:277–285

    Article  CAS  PubMed  Google Scholar 

  • Richmond A (ed) (2008) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell, London

    Google Scholar 

  • Singhal SS, Singh SP, Singhal P, Horne D, Singhal J, Awasthi S (2015) Antioxidant role of glutathione S-transferases: 4-hydroxynonenal, a key molecule in stress-mediated signaling. Toxicol Appl Pharmacol 289:361–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thring TS, Hili P, Naughton DP (2009) Anti-collagenase, anti-elastase and anti-oxidant activities of extracts from 21 plants. BMC Complement Altern Med 9:27

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsiplakou E, Abdullah M AM, Skliros D, Chatzikonstantinou M, Flemetakis E, Labrou N, Zervas G (2016) The effect of dietary Chlorella vulgaris supplementation on micro-organism community, enzyme activities and fatty acid profile in the rumen liquid of goats. J Anim Physiol Anim Nutr (Berl). doi:10.1111/jpn.12521

  • Walker TL, Purton S, Becker DK, Collet C (2005) Microalgae as bioreactors. Plant Cell Rep 24:629–641

    Article  CAS  PubMed  Google Scholar 

  • Wang HMD, Chen CC, Huynh P, Chang JS (2015a) Exploring the potential of using algae in cosmetics. Bioresour Technol 184:355–362

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Lu W, Lu S, Kong J (2015b) Protective role of glutathione against oxidative stress in Streptococcus thermophilus. Int Dairy J 45:41–47

    Article  Google Scholar 

  • Xu H, Miao X, Wu Q (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126:499–507

    Article  CAS  PubMed  Google Scholar 

  • Zeinali F, Homaei A, Kamrani E (2015) Sources of marine superoxide dismutases: characteristics and applications. Int J Biol Macromol 79:627–637

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the EU FP7-funded ASSEMBLE Marine project network, by the EU FP7-funded ALGAECOM project (grant agreement 286354), by the Horizon 2020 project ALGAE4A-B (grant agreement 691102), and by the BIOEXPLORE research project. The BIOEXPLORE research project falls under the Operational Program “Education and Lifelong Learning” and is co-financed by the European Social Fund (ESF) and National Resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos E. Labrou.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatzikonstantinou, M., Kalliampakou, A., Gatzogia, M. et al. Comparative analyses and evaluation of the cosmeceutical potential of selected Chlorella strains. J Appl Phycol 29, 179–188 (2017). https://doi.org/10.1007/s10811-016-0909-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-016-0909-1

Keywords

Navigation