Journal of Applied Phycology

, Volume 28, Issue 6, pp 3371–3377 | Cite as

Selenium-enriched Arthrospira platensis potentiates docetaxel, oxaliplatin, and topotecan anticancer activity in epithelial tumors

Article

Abstract

Docetaxel (DOC), oxaliplatin (OXA), and topotecan (TOPO) are effective chemotherapy agents in human cancers, but their clinical use is limited by severe side effects. Arthrospira platensis, a cyanobacterium that is widely used as a nutritional supplement, can accumulate in a dose- and time-dependent manner high amounts of selenium (Se), a trace element with potential anticancer effects. In this study, we (1) tested the in vitro effects of A. platensis enriched with Se alone or combined with DOC, OXA, or TOPO (IC50 concentrations) on cell proliferation, in situ apoptosis, and reactive oxygen species (ROS) production in human epithelial colorectal adenocarcinoma (Caco-2) and prostate cancer (DU145) cell lines and (2) assessed the in vivo effect on tumor growth in mice xenografted with renal carcinoma cells (RCC 786-0). Neither Se nor Se-enriched A. platensis affected the viability significantly. Incubation of Caco-2 or DU145 cells with Se + DOC, Se + OXA, or Se + TOPO-enriched A. platensis increased significantly the cytotoxicity of each drug by 85–99 % (compared with cells treated with anticancer drug alone) through promotion of caspase-3-mediated apoptosis and reduction of ROS production. In vivo, treatment with Se + TOPO-enriched A. platensis for 4 weeks significantly reduced tumor growth compared with placebo or Se-enriched A. platensis alone (p < 0.05). The Se + antimitotic drug-enriched A. platensis formulation using Se-enriched A. platensis as a vector for anticancer drug delivery could represent a new strategy for the development of effective and less toxic treatments against cancer.

Keywords

Arthrospira platensis Spirulina Selenium Anticancer agent Epithelial tumor 

References

  1. Azrak RG, Frank CL, Ling X, Slocum HK, Li F, Foster BA, Rustum YM (2006) The mechanism of methylselenocysteine and docetaxel synergistic activity in prostate cancer cells. Mol Cancer Ther 5:2540–2548CrossRefPubMedPubMedCentralGoogle Scholar
  2. Beaumont PO, Moore MJ, Ahmad K, Payne MM, Lee C, Riddick DS (1998) Role of glutathione S-transferases in the resistance of human colon cancer cell lines to doxorubicin. Cancer Res 58:947–955PubMedGoogle Scholar
  3. Buono S, Langellotti AL, Martello A, Rinna F, Fogliano V (2014) Functional ingredients from microalgae. Food Funct 5:1669–1685CrossRefPubMedGoogle Scholar
  4. Cao S, Durrani A, Rustum YM (2004) Selective modulation of the therapeutic efficacy of anticancer drugs by selenium containing compounds against human tumor xenografts. Clin Cancer Res 10:2561–2569CrossRefPubMedGoogle Scholar
  5. Cao S, Durrani A, Toth K, Rustum YM (2014) Se-methylselenocystein offers selective protection against toxicity and potentiates the antitumor activity of anticancer drugs in preclinical models. Br J Cancer 110:1733–1743CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chen T, Zhang Y (1997) High cell density mixotrophic culture of Spirulina platensis on glucose for phycocyanin production using a fed-batch system. Enz Microb Tech 20:221–224CrossRefGoogle Scholar
  7. Chen T, Zheng W, Wong Y, Yang F, Bai Y (2006) Accumulation of selenium in mixotrophic culture of Spirulina platensis on glucose. Bioresour Technol 97:2260–2265CrossRefPubMedGoogle Scholar
  8. Chintala S, Najrana T, Toth K, Cao S, Durrani FA, Pili R, Rustum YM (2012) Prolyl hydroxylase 2 dependent and Von-Hippel-Lindau independent degradation of hypoxia-inducible factor 1 and 2 alpha by selenium in clear cell renal cell carcinoma leads to tumor growth inhibition. BMC Cancer 12:293. doi:10.1186/1471-2407-12-293 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chu WL, Lim YW, Radhakrishnan AK, Lim PE (2010) Protective effect of aqueous extract from Spirulina platensis against cell death induced by free radicals. BMC Complement Altern Med 10:53. doi:10.1186/1472-6882-10-53 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Clement G (1975) Production and characteristic constituents of the algae Spirulina platensis and maxima. Ann Nutr Aliment 29:477–488PubMedGoogle Scholar
  11. Deng R, Chow TJ (2010) Hypolipidemic, antioxidant, and antiinflammatory activities of microalgae Spirulina. Cardiovasc Ther 28:e33–e45. doi:10.1111/j.1755-5922.2010.00200.x CrossRefPubMedPubMedCentralGoogle Scholar
  12. Durrani FA, Chintala S, Toth K, Cao S, Rustum YM (2015) Mechanism-based drug combination targeting HIF-2α and VEGF in renal cancer xenografts. Trends Cell Mol Biol 10:77–89Google Scholar
  13. Fernandes AP, Gandin V (2014) Selenium compounds as therapeutic agents in cancer. Biochim Biophys Acta 1850:1642–1660CrossRefPubMedGoogle Scholar
  14. Fu L, Yan X, Ruan X, Lin J, Wang Y (2014) Differential protein expression of Caco-2 cells treated with selenium nanoparticles compared with sodium selenite and selenomethionine. Nanoscale Res Lett 9:589. doi:10.1186/1556-276X-9-589 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Gao F, Yuan Q, Gao L, Cai P, Zhu H, Liu R, Wang Y, Wei Y, Huang G, Liang J, Gao X (2014) Cytotoxicity and therapeutic effect of irinotecan combined with selenium nanoparticles. Biomaterials 35:8854–8866CrossRefPubMedGoogle Scholar
  16. Huang Z, Zheng W (2007) Antagonist effects of Se-rich Spirulina platensis on rat liver fibrosis. Wei Sheng Yan Jiu 36(1):34–36PubMedGoogle Scholar
  17. Jain A, Gulbake A, Jain A, Shilpi S, Hurkat P, Kashaw S, Jain SK (2014) Development and validation of the HPLC method for simultaneous estimation of paclitaxel and topotecan. J Chromatogr Sci 52:697–703CrossRefPubMedGoogle Scholar
  18. Koníčková R, Vaňková K, Vaníková J, Váňová K, Muchová L, Subhanová I, Zadinová M, Zelenka J, Dvořák A, Kolář M, Strnad H, Rimpelová S, Ruml T, J Wong R, Vítek L (2014) Anti-cancer effects of blue-green alga Spirulina platensis, a natural source of bilirubin-like tetrapyrrolic compounds. Ann Hepatol 13:273–283PubMedGoogle Scholar
  19. Lee P, Zhang R, Li V, Liu X, Sun RW, Che CM, Wong KK (2012) Enhancement of anticancer efficacy using modified lipophilic nanoparticle drug encapsulation. Int J Nanomed 7:731–737Google Scholar
  20. Liu W, Li X, Wong YS, Zheng W, Zhang Y, Cao W, Chen T (2012) Selenium nanoparticles as a carrier of 5-fluorouracil to achieve anticancer synergism. ACS Nano 6:6578–6591CrossRefPubMedGoogle Scholar
  21. Liu T, Zeng L, Jiang W, Fu Y, Zheng W, Chen T (2015) Rational design of cancer-targeted selenium nanoparticles to antagonize multidrug resistance in cancer cells. Nanomedicine. doi:10.1016/j.nano.2015.01.009 Google Scholar
  22. Ma EL, Choi YJ, Choi J, Pothoulakis C, Rhee S, Im HE (2010) The anticancer effect of probiotic Bacillus polyfermenticus on human colon cancer cells is mediated through ErbB2 and ErbB3 inhibition. Int J Cancer 127:780–790PubMedPubMedCentralGoogle Scholar
  23. Machu L, Misurcova L, Ambrozova JV, Orsavova J, Mlcek J, Sochor J, Jurikova T (2015) Phenolic content and antioxidant capacity in algal food products. Molecules 20:1118–1133CrossRefPubMedGoogle Scholar
  24. Mosulishvili LM, Kirkesali EI, Belokobylsky AI, Khizanishvili AI, Frontasyeva MV, Pavlov SS, Gundorina SF (2002) Experimental substantiation of the possibility of developing selenium- and iodine-containing pharmaceuticals based on blue-green algae Spirulina platensis. J Pharm Biomed Anal 30:87–97CrossRefPubMedGoogle Scholar
  25. Nami Y, Haghshenas B, Abdullah N, Barzegari A, Radiah D, Rosli R, Khosroushahi AY (2015) Probiotics or antibiotics: future challenges in medicine. J Med Microbiol 64:137–146CrossRefPubMedGoogle Scholar
  26. Oreal H, Riva-Laveille C (2012) Integration de molécules actives dans des microalgues séléniées, French Patent Application FR1257009Google Scholar
  27. Rayman MP (2012) Selenium and human health. Lancet 379:1256–1268CrossRefPubMedGoogle Scholar
  28. Riss J, Décordé K, Sutra T, Delage M, Baccou JC, Jouy N, Brune JP, Oréal H, Cristol JP, Rouanet JM (2007) Phycobiliprotein C-phycocyanin from Spirulina platensis is powerfully responsible for reducing oxidative stress and NADPH oxidase expression induced by an atherogenic diet in hamsters. J Agric Food Chem 55:7962–7967CrossRefPubMedGoogle Scholar
  29. Saini MP, Sanyal SN (2014) Targeting angiogenic pathway for chemoprevention of experimental colon cancer using C-phycocyanin as cyclooxygenase-2 inhibitor. Biochem Cell Biol 92:206–218CrossRefPubMedGoogle Scholar
  30. Soccol CR, Porto de Souza Vandenberghe L, Rigon Spier M, Pedroni Medeiros AB, Tiemi Yamaguishi C, De Dea Lindner J, Pandey A, Thomaz-Soccol V (2010) The potential of probiotics: a review. Food Tech Biotech 48:413–434Google Scholar
  31. Zarrouk C. (1966) Contribution a l’etude d’une cyanophycee. Influence de divers facteurs physiques et chimiques sur la croissance et la photosynthese de Spirulina maxima (Setch. et Gardner) Geitler. Ph.D. Thesis, University of Paris, France.Google Scholar
  32. Zhang H, Chen T, Jiang J, Wong YS, Yang F, Zheng W (2011) Selenium-containing allophycocyanin purified from selenium-enriched Spirulina platensis attenuates AAPH-induced oxidative stress in human erythrocytes through inhibition of ROS generation. J Agric Food Chem 59:8683–8690CrossRefPubMedGoogle Scholar
  33. Zhang Q, Chen L, Guo K, Zheng L, Liu B, Yu W, Guo C, Liu Z, Chen Y, Tang Z (2013) Effects of different selenium levels on gene expression of a subset of selenoproteins and antioxidative capacity in mice. Biol Trace Elem Res 154:255–261CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.LaPEC EA4278Avignon UniversityAvignonFrance
  2. 2.Vita ApiLa Seyne-sur-MerFrance

Personalised recommendations