Journal of Applied Phycology

, Volume 28, Issue 6, pp 3235–3250 | Cite as

Bioprocess engineering of microalgae to optimize lipid production through nutrient management

  • Zahra Lari
  • Narges Moradi-kheibari
  • Hossein AhmadzadehEmail author
  • Parvaneh Abrishamchi
  • Navid R. Moheimani
  • Marcia A. Murry


Microalgae have been used commercially as a feedstock for the production of high-value compounds, pigments, cosmetics, and nutritional supplements. In addition, because of their rapid growth rates, high photosynthetic efficiency, and high lipid and protein content, commodity products including biodiesel, feed supplements, and polyunsaturated fatty acids derived from algal biomass are of current interest. Since microalgae lack non-photosynthetic structures and float in water, they do not need massive amounts of structural cellulose found in land plants. Thus, under optimal culture conditions, some oleaginous species can allocate up to 70 % of their biomass to lipids. Lipid production and its regulation in microalgae are species-specific and influenced by environmental conditions. Various strategies have been developed to improve lipid productivity and fatty acid composition to meet specific production goals. Manipulation of physiochemical parameters, trophic modes, and nutrient levels, known as process engineering, is a simple approach that leads to desired alterations in the biochemical composition of algal biomass, including lipid quantity and quality. In this paper, we review the effects of manipulating biochemical parameters such as necessary nutrients (C, N, P, S, Fe, and Si), NaCl concentration, and pH of culture medium to optimize lipid content and profile in some algae strains with commercial potential.


Microalgae Lipid profile Growth media Bioprocess engineering Micronutrients Macronutrients 



Financial support from ATF Committee and Ferdowsi University of Mashhad (grant numbers of 3/29836 and 3/27412) is gratefully acknowledged.


  1. Abd El Baky HH, El-Baroty GS, Bouaid A, Martinez M, Aracil J (2012) Enhancement of lipid accumulation in Scenedesmus obliquus by Optimizing CO2 and Fe3+ levels for biodiesel production. Bioresour Technol 119:429–432PubMedCrossRefGoogle Scholar
  2. Al-Hasan RH, Ghannoum MA, Sallal A-K, Abu-elteen KH, Radwan SS (1987) Correlative changes of growth, pigmentation and lipid composition of Dunaliella salina in response to halostress. Microbiology 133:2607–2616CrossRefGoogle Scholar
  3. Al-Hasan R, Ali A, Ka’wash H, Radwan S (1990) Effect of salinity on the lipid and fatty acid composition of the halophyte Navicula sp.: potential in mariculture. J Appl Phycol 2:215–222CrossRefGoogle Scholar
  4. Alonso DL, Belarbi E-H, Fernández-Sevilla JM, Rodríguez-Ruiz J, Grima EM (2000) Acyl lipid composition variation related to culture age and nitrogen concentration in continuous culture of the microalga Phaeodactylum tricornutum. Phytochemistry 54:461–471PubMedCrossRefGoogle Scholar
  5. Atabani AE, Silitonga AS, Badruddin IA, Mahlia TMI, Masjuki HH, Mekhilef S (2012) A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renew Sust Energ Rev 16:2070–2093CrossRefGoogle Scholar
  6. Azov Y, Goldman JC (1982) Free ammonia inhibition of algal photosynthesis in intensive cultures. Appl Environ Microbiol 43:735–739PubMedPubMedCentralGoogle Scholar
  7. Baker KM, Gobler CJ, Collier JL (2009) Urease gene sequences from algae and heterotrophic bacteria in axenic and nonaxenic phytoplankton cultures. J Phycol 45:625–634PubMedCrossRefGoogle Scholar
  8. Banerjee A, Sharma R, Chisti Y, Banerjee UC (2002) Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol 22:245–279PubMedCrossRefGoogle Scholar
  9. Becker EW (2007) Micro-algae as a source of protein. Biotechnol Adv 25:207–210PubMedCrossRefGoogle Scholar
  10. Ben-Amotz A, Tornabene TG, Thomas WH (1985) Chemical profile of selected species of microalgae with emphasis on lipids. J Phycol 21:72–81CrossRefGoogle Scholar
  11. Benemann JR (1997) CO2 mitigation with microalgae systems. Energy Convers Manag 38(Supplement):S475–S479CrossRefGoogle Scholar
  12. Benemann JR (2013) Microalgae for biofuels and animal feeds. Energies 6:5869. doi: 10.3390/en6115869 CrossRefGoogle Scholar
  13. Benemann JR, Oswald WJ (1996) Systems and economic analysis of microalgae ponds for conversion of CO2 to biomass. Final report US DOE., Pittsburgh, p 1–201Google Scholar
  14. Bhatnagar A, Chinnasamy S, Singh M, Das KC (2011) Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters. Appl Energy 88:3425–3431CrossRefGoogle Scholar
  15. Bondioli P, Della Bella L, Rivolta G, Zittelli GC, Bassi N, Rodolfi L, Casini D, Prussi M, Chiaramonti D, Tredici MR (2012) Oil production by the marine microalgae Nannochloropsis sp. M-M24 and Tetraselmis suecica M-M33. Bioresour Technol 114:567–572PubMedCrossRefGoogle Scholar
  16. Borowitzka MA (2013a) Energy from microalgae: a short history. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, pp 1–15CrossRefGoogle Scholar
  17. Borowitzka MA (2013b) High-value products from microalgae—their development and commercialisation. J Appl Phycol 25:743–756CrossRefGoogle Scholar
  18. Borowitzka MA (2016) Algal physiology and large-scale outdoor cultures of microalgae. In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Springer, Dordrecht, pp 601–652CrossRefGoogle Scholar
  19. Breuer G, Lamers PP, Martens DE, Draaisma RB, Wijffels RH (2012) The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains. Bioresour Technol 124:217–226PubMedCrossRefGoogle Scholar
  20. Brown MR (1991) The amino-acid and sugar composition of 16 species of microalgae used in mariculture. J Exp Mar Biol Ecol 145:79–99CrossRefGoogle Scholar
  21. Buchanan BB, Gruissem W, Jones RL (2000) Biochemistry & molecular biology of plants. American Society of Plant Physiologists, RockvilleGoogle Scholar
  22. Cakmak T, Angun P, Demiray YE, Ozkan AD, Elibol Z, Tekinay T (2012) Differential effects of nitrogen and sulfur deprivation on growth and biodiesel feedstock production of Chlamydomonas reinhardtii. Biotechnol Bioeng 109:1947–1957PubMedCrossRefGoogle Scholar
  23. Cheirsilp B, Torpee S (2012) Enhanced growth and lipid production of microalgae under mixotrophic culture condition: Effect of light intensity, glucose concentration and fed-batch cultivation. Bioresour Technol 110:510–516PubMedCrossRefGoogle Scholar
  24. Chen M, Tang H, Ma H, Holland TC, Ng KYS, Salley SO (2011) Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta. Bioresour Technol 102:1649–1655PubMedCrossRefGoogle Scholar
  25. Cheng Y, Lu Y, Gao C, Wu Q (2009) Alga-based biodiesel production and optimization using sugar cane as the feedstock. Energy Fuel 23:4166–4173CrossRefGoogle Scholar
  26. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306PubMedCrossRefGoogle Scholar
  27. Chojnacka K, Noworyta A (2004) Evaluation of Spirulina sp. growth in photoautotrophic, heterotrophic and mixotrophic cultures. Enzyme Microbiol Technol 34:461–465CrossRefGoogle Scholar
  28. Chu F-F, Chu P-N, Cai P-J, Li W-W, Lam PKS, Zeng RJ (2013) Phosphorus plays an important role in enhancing biodiesel productivity of Chlorella vulgaris under nitrogen deficiency. Bioresour Technol 134:341–346PubMedCrossRefGoogle Scholar
  29. Chu F-F, Chu P-N, Shen X-F, Lam PKS, Zeng RJ (2014) Effect of phosphorus on biodiesel production from Scenedesmus obliquus under nitrogen-deficiency stress. Bioresour Technol 152:241–246PubMedCrossRefGoogle Scholar
  30. Chungjatupornchai W, Kitraksa P, Fa-aroonsawat S (2016) Stable nuclear transformation of the oleaginous microalga Neochloris oleoabundans by electroporation. J Appl Phycol 28:191–199CrossRefGoogle Scholar
  31. Collyer DM, Fogg GE (1955) Studies on fat accumulation by algae. J Exp Bot 6:256–275CrossRefGoogle Scholar
  32. Converti A, Casazza AA, Ortiz EY, Perego P, Del Borghi M (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process 48:1146–1151CrossRefGoogle Scholar
  33. Courchesne NMD, Parisien A, Wang B, Lan CQ (2009) Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. J Biotechnol 141:31–41PubMedCrossRefGoogle Scholar
  34. Craggs RJ, Heubeck S, Lundquist TJ, Benemann JR (2011) Algal biofuels from wastewater treatment high rate algal ponds. Water Sci Technol 63:660–665PubMedCrossRefGoogle Scholar
  35. Day JD, Edwards AP, Rodgers GA (1991) Development of an industrial-scale process for the heterotrophic production of a micro-algal mollusc feed. Bioresour Technol 38:245–249CrossRefGoogle Scholar
  36. Deng X, Gu B, Hu X, Guo J, Fei X (2011) Photosynthetic efficiency and lipid accumulation are affected by the concentration of carbon in microalgae Micractinium pusillum Y-002. Afr J Biotechnol 10:11600–11610Google Scholar
  37. Dortch Q (1990) The interaction between ammonium and nitrate uptake in phytoplankton. Mar Ecol Prog Ser 61:183–203CrossRefGoogle Scholar
  38. Duan X, Ren GY, Liu LL, Zhu WX (2012) Salt-induced osmotic stress for lipid overproduction in batch culture of Chlorella vulgaris. Afr J Biotechnol 11:7072–7078Google Scholar
  39. Dyhrman ST (2016) Nutrients and their acquisition: phosphorus physiology in microalgae. In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Springer, Dordrecht, pp 155–183CrossRefGoogle Scholar
  40. Elenkov I, Stefanov K, Dimitrova-Konaklieva S, Popov S (1996) Effect of salinity on lipid composition of Cladophora vagabunda. Phytochemistry 42:39–44CrossRefGoogle Scholar
  41. Elrifi IR, Holmes JJ, Weger HG, Mayo WP, Turpin DH (1988) RuBP limitation of photosynthetic carbon fixation during NH3 assimilation: interactions between photosynthesis, respiration, and ammonium assimilation in n-limited green algae. Plant Physiol 87:395–401PubMedPubMedCentralCrossRefGoogle Scholar
  42. Enright CT, Newkirk GF, Craigie JS, Castell JD (1986) Growth of juvenile Ostrea edulis L. fed Chaetoceros gracilis Schütt of varied chemical composition. J Exp Mar Biol Ecol 96:15–26CrossRefGoogle Scholar
  43. Fan J, Cui Y, Wan M, Wang W, Li Y (2014) Lipid accumulation and biosynthesis genes response of the oleaginous Chlorella pyrenoidosa under three nutrition stressors. Biotechnol Biofuels 7:1–14CrossRefGoogle Scholar
  44. Feng D, Chen Z, Xue S, Zhang W (2011) Increased lipid production of the marine oleaginous microalgae Isochrysis zhangjiangensis (Chrysophyta) by nitrogen supplement. Bioresour Technol 102:6710–6716PubMedCrossRefGoogle Scholar
  45. Fernandes TA, Iyer V, Apte SK (1993) Differential responses of nitrogen-fixing cyanobacteria to salinity and osmotic stresses. Appl Environ Microbiol 59:899–904PubMedPubMedCentralGoogle Scholar
  46. Fidalgo J, Cid A, Abalde J, Herrero C (1995) Culture of the marine diatom Phaeodactylum tricornutum with different nitrogen sources: growth, nutrient conversion and biochemical composition. Cah Biol Mar 36:165–173Google Scholar
  47. Fidalgo JP, Cid A, Torres E, Sukenik A, Herrero C (1998) Effects of nitrogen source and growth phase on proximate biochemical composition, lipid classes and fatty acid profile of the marine microalga Isochrysis galbana. Aquaculture 166:105–116CrossRefGoogle Scholar
  48. Flynn KJ, Butler I (1986) The interaction between ammonium and nitrate uptake in phytoplankton. Mar Ecol Prog Ser 34:281–304CrossRefGoogle Scholar
  49. Fon-Sing S, Borowitzka MA (2016) Isolation and screening of euryhaline Tetraselmis spp. suitable for large-scale outdoor culture in hypersaline media for biofuels. J Appl Phycol 28:1–14CrossRefGoogle Scholar
  50. Gardner R, Peters P, Peyton B, Cooksey KE (2011) Medium pH and nitrate concentration effects on accumulation of triacylglycerol in two members of the Chlorophyta. J Appl Phycol 23:1005–1016CrossRefGoogle Scholar
  51. Gardner RD, Cooksey KE, Mus F, Macur R, Moll K, Eustance E, Carlson RP, Gerlach R, Fields MW, Peyton BM (2012) Use of sodium bicarbonate to stimulate triacylglycerol accumulation in the chlorophyte Scenedesmus sp. and the diatom Phaeodactylum tricornutum. J Appl Phycol 24:1311–1320CrossRefGoogle Scholar
  52. Gatenby C, Orcutt D, Kreeger D, Parker B, Jones V, Neves R (2003) Biochemical composition of three algal species proposed as food for captive freshwater mussels. J Appl Phycol 15:1–11CrossRefGoogle Scholar
  53. Giordano M, Prioretti L (2016) Sulphur and algae: metabolism, ecology and evolution. In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Springer, Dordrecht, pp 185–209CrossRefGoogle Scholar
  54. Giordano M, Raven JA (2014) Nitrogen and sulfur assimilation in plants and algae. Aquat Bot 118:45–61CrossRefGoogle Scholar
  55. Giordano M, Beardall J, Raven JA (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol 56:99–131PubMedCrossRefGoogle Scholar
  56. Gladue R, Maxey J (1994) Microalgal feeds for aquaculture. J Appl Phycol 6:131–141CrossRefGoogle Scholar
  57. González-Fernández C, Ballesteros M (2012) Linking microalgae and cyanobacteria culture conditions and key-enzymes for carbohydrate accumulation. Biotechnol Adv 30:1655–1661PubMedCrossRefGoogle Scholar
  58. Griffiths M, Harrison SL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507CrossRefGoogle Scholar
  59. Guckert JB, Cooksey KE (1990) Triglyceride accumulation and fatty acid profile changes in Chlorella (Chlorophyta) during high pH-induced cell cycle inhibition. J Phycol 26:72–79CrossRefGoogle Scholar
  60. Guschina IA, Harwood JL (2013) Algal lipids and their metabolism. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, pp 17–36CrossRefGoogle Scholar
  61. Harwati TU, Willke T, Vorlop KD (2012) Characterization of the lipid accumulation in a tropical freshwater microalgae Chlorococcum sp. Bioresour Technol 121:54–60PubMedCrossRefGoogle Scholar
  62. Heredia-Arroyo T, Wei W, Hu B (2010) Oil accumulation via heterotrophic/mixotrophic Chlorella protothecoides. Appl Biochem Biotechnol 162:1978–1995PubMedCrossRefGoogle Scholar
  63. Heredia-Arroyo T, Wei W, Ruan R, Hu B (2011) Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non-sugar materials. Biomass Bioenergy 35:2245–2253CrossRefGoogle Scholar
  64. Herrero C, Cid A, Fabregas J, Abalde J (1991) Yields in biomass and chemical constituents of four commercially important marine microalgae with different culture media. Aquac Eng 10:99–110CrossRefGoogle Scholar
  65. Ho S-H, Chen C-Y, Chang J-S (2012) Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour Technol 113:244–252Google Scholar
  66. Ho S-H, Huang S-W, Chen C-Y, Hasunuma T, Kondo A, Chang J-S (2013) Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresour Technol 135:191–198PubMedCrossRefGoogle Scholar
  67. Hu H, Gao K (2003) Optimization of growth and fatty acid composition of a unicellular marine picoplankton, Nannochloropsis sp., with enriched carbon sources. Biotechnol Lett 25:421–425PubMedCrossRefGoogle Scholar
  68. Huang X, Huang Z, Wen W, Yan J (2013) Effects of nitrogen supplementation of the culture medium on the growth, total lipid content and fatty acid profiles of three microalgae (Tetraselmis subcordiformis, Nannochloropsis oculata and Pavlova viridis). J Appl Phycol 25:129–137CrossRefGoogle Scholar
  69. Huppe HC, Turpin DH (1994) Integration of carbon and nitrogen metabolism in plant and algal cells. Annu Rev Plant Physiol 45:577–607CrossRefGoogle Scholar
  70. Illman AM, Scragg AH, Shales SW (2000) Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microbiol Technol 27:631–635CrossRefGoogle Scholar
  71. Iskandarov U, Sitnik S, Shtaida N, Didi-Cohen S, Leu S, Khozin-Goldberg I, Cohen Z, Boussiba S (2016) Cloning and characterization of a GPAT-like gene from the microalga Lobosphaera incisa (Trebouxiophyceae): overexpression in Chlamydomonas reinhardtii enhances TAG production. J Appl Phycol 28:907–919CrossRefGoogle Scholar
  72. Jakobsen A, Aasen I, Josefsen K, Strøm A (2008) Accumulation of docosahexaenoic acid-rich lipid in thraustochytrid Aurantiochytrium sp. strain T66: effects of N and P starvation and O2 limitation. Appl Microbiol Biotechnol 80:297–306PubMedCrossRefGoogle Scholar
  73. Khozin-Goldberg I, Cohen Z (2006) The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochemistry 67:696–701PubMedCrossRefGoogle Scholar
  74. Kim G, Bae J, Lee K (2016) Nitrate repletion strategy for enhancing lipid production from marine microalga Tetraselmis sp. Bioresour Technol 205:274–279PubMedCrossRefGoogle Scholar
  75. Kirroliaa A, Bishnoia N, Singhb N (2011) Salinity as a factor affecting the physiological and biochemical traits of Scenedesmus quadricauda. J Algal Biomass Utln 2:28–34Google Scholar
  76. Knothe G (2011) Will biodiesel derived from algal oils live up to its promise? A fuel property assessment. Lipid Technol 23:247–249CrossRefGoogle Scholar
  77. Knothe G (2013) Production and properties of biodiesel from algal oils. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, pp 207–221CrossRefGoogle Scholar
  78. Koller M, Salerno A, Tuffner P, Koinigg M, Böchzelt H, Schober S, Pieber S, Schnitzer H, Mittelbach M, Braunegg G (2012) Characteristics and potential of micro algal cultivation strategies: a review. J Clean Prod 37:377–388CrossRefGoogle Scholar
  79. Kumar A et al (2010) Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol 28:371–380PubMedCrossRefGoogle Scholar
  80. Lee S, Yoon B-D, Oh H-M (1998) Rapid method for the determination of lipid from the green alga Botryococcus braunii. Biotechnol Tech 12:553–556CrossRefGoogle Scholar
  81. Leftley JW, Syrett PJ (1973) Urease and ATP: urea amidolyase activity in unicellular algae. Microbiology 77:109–115Google Scholar
  82. Li Y, Horsman M, Wang B, Wu N, Lan C (2008) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol 81:629–636PubMedCrossRefGoogle Scholar
  83. Li X, Přibyl P, Bišová K, Kawano S, Cepák V, Zachleder V, Čížková M, Brányiková I, Vítová M (2013) The microalga Parachlorella kessleri––A novel highly efficient lipid producer. Biotechnol Bioeng 110:97–107PubMedCrossRefGoogle Scholar
  84. Li Y, Han F, Xu H, Mu J, Chen D, Feng B, Zeng H (2014) Potential lipid accumulation and growth characteristic of the green alga Chlorella with combination cultivation mode of nitrogen (N) and phosphorus (P). Bioresour Technol 174:24–32PubMedCrossRefGoogle Scholar
  85. Liang Y, Beardall J, Heraud P (2006) Effects of nitrogen source and UV radiation on the growth, chlorophyll fluorescence and fatty acid composition of Phaeodactylum tricornutum and Chaetoceros muelleri (Bacillariophyceae). J Photochem Photobiol B 82:161–172PubMedCrossRefGoogle Scholar
  86. Lin Q, Gu N, Li G, Lin J, Huang L, Tan LL (2012) Effects of inorganic carbon concentration on carbon formation, nitrate utilization, biomass and oil accumulation of Nannochloropsis oculata CS 179. Bioresour Technol 111:353–359Google Scholar
  87. Liu Z-Y, Wang G-C, Zhou B-C (2008) Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour Technol 99:4717–4722PubMedCrossRefGoogle Scholar
  88. Liu W, Huang Z, Li P, Xia J, Chen B (2012) Formation of triacylglycerol in Nitzschia closterium f. minutissima under nitrogen limitation and possible physiological and biochemical mechanisms. J Exp Mar Biol Ecol 418–419:24–29CrossRefGoogle Scholar
  89. Lu X (2010) A perspective: photosynthetic production of fatty acid-based biofuels in genetically engineered cyanobacteria. Biotechnol Adv 28:742–746PubMedCrossRefGoogle Scholar
  90. Lv J-M, Cheng L-H, Xu X-H, Zhang L, Chen H-L (2010) Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Bioresour Technol 101:6797–6804PubMedCrossRefGoogle Scholar
  91. Lyon S, Ahmadzadeh H, Murry M (2015) Algae-based wastewater treatment for biofuel production: processes, species, and extraction methods. In: Moheimani NR, McHenry MP, de Boer K, Bahri PA (eds) Biomass and biofuels from microalgae. Springer, Cham, pp 95–115Google Scholar
  92. Mansour MMF (2013) Plasma membrane permeability as an indicator of salt tolerance in plants. Biol Plant 57:1–10CrossRefGoogle Scholar
  93. Mansour M, Salama KA, Allam HH (2015) Role of the plasma membrane in saline conditions: lipids and proteins. Bot Rev:1–36Google Scholar
  94. Marchetti A, Maldonado MT (2016) Iron. In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Springer, Dordrecht, pp 233–279CrossRefGoogle Scholar
  95. Milledge JJ (2011) Commercial application of microalgae other than as biofuels: a brief review. Rev Environ Sci Biotechnol 10:31–41CrossRefGoogle Scholar
  96. Moheimani NR (2012) Inorganic carbon and pH effect on growth and lipid productivity of Tetraselmis suecica and Chlorella sp (Chlorophyta) grown outdoors in bag photobioreactors. J Appl Phycol 25:387–398CrossRefGoogle Scholar
  97. Moheimani N (2013) Long-term outdoor growth and lipid productivity of Tetraselmis suecica, Dunaliella tertiolecta and Chlorella sp. (Chlorophyta) in bag photobioreactors. J Appl Phycol 25:167–176CrossRefGoogle Scholar
  98. Moheimani NR, Borowitzka MA (2011) Increased CO2 and the effect of pH on growth and calcification of Pleurochrysis carterae and Emiliania huxleyi (Haptophyta) in semicontinuous cultures. Appl Microbiol Biotechnol 90:1399–1407PubMedCrossRefGoogle Scholar
  99. Moheimani N, Parlevliet D, McHenry M, Bahri P, de Boer K (2015) Past, present and future of microalgae cultivation developments. In: Moheimani NR, McHenry MP, de Boer K, Bahri PA (eds) Biomass and biofuels from microalgae. Springer, Cham, pp 1–18Google Scholar
  100. Moreira D, Pires JCM (2016) Atmospheric CO2 capture by algae: negative carbon dioxide emission path. Bioresour Technol. doi: 10.1016/j.biortech.2016.03.060 Google Scholar
  101. Msanne J, Xu D, Konda AR, Casas-Mollano JA, Awada T, Cahoon EB, Cerutti H (2012) Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169. Phytochemistry 75:50–59PubMedCrossRefGoogle Scholar
  102. Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI (2007) Photoinhibition of photosystem II under environmental stress. Biochim Biophys Acta - Bioenergy 1767:414–421CrossRefGoogle Scholar
  103. Negi S, Barry AN, Friedland N, Sudasinghe N, Subramanian S, Pieris S, Holguin FO, Dungan B, Schaub T, Sayre R (2016) Impact of nitrogen limitation on biomass, photosynthesis, and lipid accumulation in Chlorella sorokiniana. J Appl Phycol 28:803–812CrossRefGoogle Scholar
  104. Neilson AH, Lewin RA (1974) The uptake and utilization of organic carbon by algae: an essay in comparative biochemistry. Phycologia 13:227–264CrossRefGoogle Scholar
  105. Nigam S, Rai MP, Sharma R (2011) Effect of nitrogen on growth and lipid content of Chlorella pyrenoidosa. Am J Biochem Biotechnol 7:126–131CrossRefGoogle Scholar
  106. Nishiyama Y, Allakhverdiev SI, Murata N (2006) A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. Biochim Biophys Acta - Bioenergy 1757:742–749CrossRefGoogle Scholar
  107. Ogbonna J, McHenry M (2015) Culture systems incorporating heterotrophic metabolism for biodiesel oil production by microalgae. In: Moheimani NR, McHenry MP, de Boer K, Bahri PA (eds) Biomass and biofuels from microalgae. Springer, Cham, pp 63–74Google Scholar
  108. Ogbonna J, Moheimani N (2015) Potentials of exploiting heterotrophic metabolism for biodiesel oil production by microalgae. In: Moheimani NR, McHenry MP, de Boer K, Bahri PA (eds) Biomass and biofuels from microalgae. Springer, Cham, pp 45–61Google Scholar
  109. Park K, Whitney C, McNichol JC, Dickinson KE, MacQuarrie S, Skrupski BP, Zou J, Wilson KE, O’Leary SJB, McGinn PJ (2012) Mixotrophic and photoautotrophic cultivation of 14 microalgae isolates from Saskatchewan, Canada: potential applications for wastewater remediation for biofuel production. J Appl Phycol 24:339–348CrossRefGoogle Scholar
  110. Peeler TC, Stephenson MB, Einspahr KJ, Thompson GA (1989) Lipid characterization of an enriched plasma membrane fraction of Dunaliella salina grown in media of varying salinity. Plant Physiol 89:970–976PubMedPubMedCentralCrossRefGoogle Scholar
  111. Perez-Garcia O, Escalante FME, de-Bashan LE, Bashan Y (2011) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45:11–36PubMedCrossRefGoogle Scholar
  112. Pérez-Pazos J-V, Fernández-Izquierdo P (2011) Synthesis of neutral lipids in Chlorella sp. under different light and carbonate conditions Ciencia. Tecnología y Futuro 4:47–58Google Scholar
  113. Piorreck M, Baasch K-H, Pohl P (1984) Biomass production, total protein, chlorophylls, lipids and fatty acids of freshwater green and blue-green algae under different nitrogen regimes. Phytochemistry 23:207–216CrossRefGoogle Scholar
  114. Popovich CA, Damiani C, Constenla D, Martínez AM, Freije H, Giovanardi M, Pancaldi S, Leonardi PI (2012) Neochloris oleoabundans grown in enriched natural seawater for biodiesel feedstock: Evaluation of its growth and biochemical composition. Bioresour Technol 114:287–293PubMedCrossRefGoogle Scholar
  115. Praveenkumar R, Shameera K, Mahalakshmi G, Akbarsha MA, Thajuddin N (2012) Influence of nutrient deprivations on lipid accumulation in a dominant indigenous microalga Chlorella sp., BUM11008: evaluation for biodiesel production. Biomass Bioenergy 37:60–66CrossRefGoogle Scholar
  116. Procházková G, Brányiková I, Zachleder V, Brányik T (2014) Effect of nutrient supply status on biomass composition of eukaryotic green microalgae. J Appl Phycol 26:1359–1377CrossRefGoogle Scholar
  117. Raeesossadati MJ, Ahmadzadeh H, McHenry MP, Moheimani NR (2014) CO2 bioremediation by microalgae in photobioreactors: impacts of biomass and CO2 concentrations, light, and temperature. Algal Res 6(Part A):78–85CrossRefGoogle Scholar
  118. Rao AR, Dayananda C, Sarada R, Shamala TR, Ravishankar GA (2007) Effect of salinity on growth of green alga Botryococcus braunii and its constituents. Bioresour Technol 98:560–564PubMedCrossRefGoogle Scholar
  119. Rasala BA, Gimpel JA, Tran M, Hannon MJ, Miyake-Stoner SJ, Specht EA, Mayfield SP (2013) Genetic engineering to improve algal biofuels production. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, pp 99–113CrossRefGoogle Scholar
  120. Ratledge C (2002) Regulation of lipid accumulation in oleaginous micro-organisms. Biochem Soc Trans 30:1047–1049PubMedCrossRefGoogle Scholar
  121. Raven JA, Giordano M (2016) Combined nitrogen. In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Springer, Dordrecht, pp 143–154CrossRefGoogle Scholar
  122. Raven JA, Giordano M, Beardall J, Maberly SC (2012) Algal evolution in relation to atmospheric CO2: carboxylases, carbon-concentrating mechanisms and carbon oxidation cycles. Phil Trns Roy Soc B 367:493–507Google Scholar
  123. Reitan KI, Rainuzzo JR, Olsen Y (1994) Effect of nutrient limitation on fatty acid and lipid content of marine microalgae. J Phycol 30:972–979CrossRefGoogle Scholar
  124. Ren H-Y, Liu B-F, Ma C, Zhao L, Ren N-Q (2013) A new lipid-rich microalga Scenedesmus sp. strain R-16 isolated using Nile red staining: effects of carbon and nitrogen sources and initial pH on the biomass and lipid production. Biotechnol Biofuels 6:143–143PubMedPubMedCentralCrossRefGoogle Scholar
  125. Renaud SM, Parry DL (1994) Microalgae for use in tropical aquaculture II: effect of salinity on growth, gross chemical composition and fatty acid composition of three species of marine microalgae. J Appl Phycol 6:347–356CrossRefGoogle Scholar
  126. Renaud SM, Thinh L-V, Parry DL (1999) The gross chemical composition and fatty acid composition of 18 species of tropical Australian microalgae for possible use in mariculture. Aquaculture 170:147–159CrossRefGoogle Scholar
  127. Řezanka T, Lukavský J, Nedbalová L, Sigler K (2011) Effect of nitrogen and phosphorus starvation on the polyunsaturated triacylglycerol composition, including positional isomer distribution, in the alga Trachydiscus minutus. Phytochemistry 72:2342–2351PubMedCrossRefGoogle Scholar
  128. Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112PubMedCrossRefGoogle Scholar
  129. Roessler PG (1988) Changes in the activities of various lipid and carbohydrate biosynthetic enzymes in the diatom Cyclotella cryptica in response to silicon deficiency. Arch Biochem Biophys 267:521–528PubMedCrossRefGoogle Scholar
  130. Roessler PG (1990) Environmental control of glycerolipid metabolism in microalgae: commercial implications and future research directions. J Phycol 26:393–399CrossRefGoogle Scholar
  131. Roopnarain A, Gray VM, Sym SD (2014) Phosphorus limitation and starvation effects on cell growth and lipid accumulation in Isochrysis galbana U4 for biodiesel production. Bioresour Technol 156:408–411PubMedCrossRefGoogle Scholar
  132. Rueter JG, Ohki K, Fujita Y (1990) The effect of iron nutrition on photosynthesis and nitrogen fixation in cultures of Trichodesmium (Cyanophyceae). J Phycol 26:30–35CrossRefGoogle Scholar
  133. Santos AM, Janssen M, Lamers PP, Evers WAC, Wijffels RH (2012) Growth of oil accumulating microalga Neochloris oleoabundans under alkaline–saline conditions. Bioresour Technol 104:593–599PubMedCrossRefGoogle Scholar
  134. Sato N, Hagio M, Wada H, Tsuzuki M (2000) Environmental effects on acidic lipids of thylakoid membranes. Biochem Soc Trans 28:912–914PubMedCrossRefGoogle Scholar
  135. Sharma KK, Schuhmann H, Schenk PM (2012) High lipid induction in microalgae for biodiesel production. Energies 5:1532–1553CrossRefGoogle Scholar
  136. Shi X-M, Liu H-J, Zhang X-W, Chen F (1999) Production of biomass and lutein by Chlorella protothecoides at various glucose concentrations in heterotrophic cultures. Process Biochem 34:341–347CrossRefGoogle Scholar
  137. Siaut M, Cuine S, Cagnon C, Fessler B, Nguyen M, Carrier P, Beyly A, Beisson F, Triantaphylides C, Li-Beisson Y, Peltier G (2011) Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol 11:7PubMedPubMedCentralCrossRefGoogle Scholar
  138. Singh SP, Singh P (2015) Effect of temperature and light on the growth of algae species: a review. Renew Sust Energ Rev 50:431–444CrossRefGoogle Scholar
  139. Siron R, Giusti G, Berland B (1989) Changes in the fatty acid composition of Phaeodactylum tricornutum and Dunaliella tertiolecta during growth and under phosphorus deficiency. Mar Ecol Prog Ser 55:95–100CrossRefGoogle Scholar
  140. Spoehr HA, Milner HW (1949) The chemical composition of chlorella; effect of environmental conditions. Plant Physiol 24:120–149PubMedPubMedCentralCrossRefGoogle Scholar
  141. Sun N, Wang Y, Li Y-T, Huang J-C, Chen F (2008) Sugar-based growth, astaxanthin accumulation and carotenogenic transcription of heterotrophic Chlorella zofingiensis (Chlorophyta). Process Biochem 43:1288–1292CrossRefGoogle Scholar
  142. Syrett PJ, Morris I (1963) The inhibition of nitrate assimilation by ammonium in Chlorella. Biochim Biophys Acta - Enzymological Subj 67:566–575CrossRefGoogle Scholar
  143. Taguchi S, Hirata JA, Laws EA (1987) Silicate deficiency and lipid synthesis of marine diatoms. J Phycol 23:260–267CrossRefGoogle Scholar
  144. Takagi M, Karseno, Yoshida T (2006) Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J Biosci Bioeng 101:223–226PubMedCrossRefGoogle Scholar
  145. Takeshita T, Ota S, Yamazaki T, Hirata A, Zachleder V, Kawano S (2014) Starch and lipid accumulation in eight strains of six Chlorella species under comparatively high light intensity and aeration culture conditions. Bioresour Technol 158:127–134PubMedCrossRefGoogle Scholar
  146. Tan C, Johns M (1991) Fatty acid production by heterotrophic Chlorella saccharophila. Hydrobiologia 215:13–19CrossRefGoogle Scholar
  147. Tanadul O, VanderGheynst JS, Beckles DM, Powell ALT, Labavitch JM (2014) The impact of elevated CO2 concentration on the quality of algal starch as a potential biofuel feedstock. Biotechnol Bioeng 111:1323–1331Google Scholar
  148. Taziki M, Ahmadzadeh H, Murry MA, Lyon SR (2015) Nitrate and nitrite removal from wastewater using algae. Curr Biotechnol 4:1–15Google Scholar
  149. Thacker A, Syrett PJ (1972) The assimilation of nitrate and ammonium by Chlamydomonas reinhardii. New Phytol 71:423–433CrossRefGoogle Scholar
  150. Tsuzuki M, Ohnuma E, Sato N, Takaku T, Kawaguchi A (1990) Effects of CO2 concentration during growth on fatty acid composition in microalgae. Plant Physiol 93:851–856PubMedPubMedCentralCrossRefGoogle Scholar
  151. Vazquez-Duhalt R, Arredondo-Vega BO (1991) Haloadaptation of the green alga Botryococcus braunii (race A). Phytochemistry 30:2919–2925CrossRefGoogle Scholar
  152. Vítová M, Bišová K, Kawano S, Zachleder V (2015) Accumulation of energy reserves in algae: from cell cycles to biotechnological applications. Biotechnol Adv 33:1204–1218PubMedCrossRefGoogle Scholar
  153. Volkman JK, Brown MR (2005) Nutritional value of microalgae and applications. In: Subba Rao DV (ed) Algal cultures, analogues of blooms and applications. vol 1. Science Publishers Enfield, USA, pp 407–457Google Scholar
  154. Wan M, Liu P, Xia J, Rosenberg JN, Oyler GA, Betenbaugh MJ, Nie Z, Qiu G (2011) The effect of mixotrophy on microalgal growth, lipid content, and expression levels of three pathway genes in Chlorella sorokiniana. Appl Microbiol Biotechnol 91:835–844PubMedCrossRefGoogle Scholar
  155. Wang H, Fu R, Pei G (2012) A study on lipid production of the mixotrophic microalgae Phaeodactylum tricornutum on various carbon sources. Afr J Microbiol Res 6:1041–1047Google Scholar
  156. Wen ZY, Chen F (2000) Heterotrophic production of eicosapentaenoid acid by the diatom Nitzschia laevis: Effects of silicate and glucose. J Ind Microbiol Biotechnol 25:218CrossRefGoogle Scholar
  157. Wen Z-Y, Chen F (2001a) Application of statistically-based experimental designs for the optimization of eicosapentaenoic acid production by the diatom Nitzschia laevis. Biotechnol Bioeng 75:159–169PubMedCrossRefGoogle Scholar
  158. Wen Z-Y, Chen F (2001b) Optimization of nitrogen sources for heterotrophic production of eicosapentaenoic acid by the diatom Nitzschia laevis. Enzyme Microbiol Technol 29:341–347CrossRefGoogle Scholar
  159. Wen Z-Y, Chen F (2003) Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnol Adv 21:273–294PubMedCrossRefGoogle Scholar
  160. White DA, Pagarette A, Rooks P, Ali ST (2013) The effect of sodium bicarbonate supplementation on growth and biochemical composition of marine microalgae cultures. J Appl Phycol 25:153–165CrossRefGoogle Scholar
  161. Widjaja A, Chien C-C, Ju Y-H (2009) Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. J Taiwan Inst Chem Eng 40:13–20CrossRefGoogle Scholar
  162. Wilhelm C, Büchel C, Fisahn J, Goss R, Jakob T, LaRoche J, Lavaud J, Lohr M, Riebesell U, Stehfest K, Valentin K, Kroth PG (2006) The regulation of carbon and nutrient assimilation in diatoms is significantly different from green algae. Protist 157:91–124PubMedCrossRefGoogle Scholar
  163. Woertz I, Feffer A, Lundquist T, Nelson Y (2009) Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock. J Environ Eng 135:1115–1122CrossRefGoogle Scholar
  164. Xiong W, Gao C, Yan D, Wu C, Wu Q (2010) Double CO2 fixation in photosynthesis–fermentation model enhances algal lipid synthesis for biodiesel production. Bioresour Technol 101:2287–2293PubMedCrossRefGoogle Scholar
  165. Xu X-Q, Beardall J (1997) Effect of salinity on fatty acid composition of a green microalga from an Antarctic hypersaline lake. Phytochemistry 45:655–658CrossRefGoogle Scholar
  166. Yao S, Brandt A, Egsgaard H, Gjermansen C (2012) Neutral lipid accumulation at elevated temperature in conditional mutants of two microalgae species. Plant Physiol Biochem 61:71–79PubMedCrossRefGoogle Scholar
  167. Zhao G, Yu J, Jiang F, Zhang X, Tan T (2012) The effect of different trophic modes on lipid accumulation of Scenedesmus quadricauda. Bioresour Technol 114:466–471PubMedCrossRefGoogle Scholar
  168. Zhila NO, Kalacheva GS, Volova TG (2011) Effect of salinity on the biochemical composition of the alga Botryococcus braunii Kütz IPPAS H-252. J Appl Phycol 23:47–52CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Zahra Lari
    • 1
  • Narges Moradi-kheibari
    • 2
  • Hossein Ahmadzadeh
    • 2
    Email author
  • Parvaneh Abrishamchi
    • 1
  • Navid R. Moheimani
    • 3
  • Marcia A. Murry
    • 4
  1. 1.Department of BiologyFerdowsi University of MashhhadMashhadIran
  2. 2.Department of ChemistryFerdowsi University of MashhadMashhadIran
  3. 3.Algae R&D Centre, School of Veterinary and Life SciencesMurdoch UniversityMurdochWestern Australia
  4. 4.Department of Biological ScienceCalifornia State Polytechnic UniversityPomonaUSA

Personalised recommendations