Journal of Applied Phycology

, Volume 28, Issue 6, pp 3259–3267 | Cite as

Phosphopantetheinylation in the green microalgae Chlamydomonas reinhardtii

  • Eva C. Sonnenschein
  • Yuan Pu
  • Joris Beld
  • Michael D. Burkart


Microalgal biofuel is a promising solution to the decline of fossil fuels. However, algal fatty acid metabolism, the machinery producing the raw material for biofuels, remains poorly understood. The central unit of the fatty acid synthase (FAS) is the acyl carrier protein (ACP), which is responsible for holding the product. Fatty acid biosynthesis is initiated through posttranslational modification of the ACP by the phosphopantetheinyl transferase (PPTase). We identified two PPTases, PptC1 and PptC2, in the model alga Chlamydomonas reinhardtii by genome analysis and phylogenetic and structural comparison. Both PPTases are of Sfp-type, the archetypical PPTase type for non-ribosomal peptide and polyketide biosynthetic pathways in bacteria and cyanobacteria. In vitro analysis revealed that PptC2 has a broader substrate range than PptC1. Both PPTases were able to activate the cognate ACP of the type II FAS, while PptC2 also recognized ACP of Escherichia coli type II FAS and actinorhodin type II polyketide synthase. Besides FAS as PPTase target, the C. reinhardtii genome encodes a single type I PKS, and we hypothesize that PptC2 is responsible for its activation. Screening of the currently available microalgal genome data revealed that most green microalgae appear to carry two PPTases forming clusters with each C. reinhardtii PPTase, while microalgae of other divisions carry one or two PPTases and do not cluster in the pattern of the green algal data. This new understanding on the PPTases in microalgae shows that microalgae are already primed for biotechnological applications in contrast to other organisms. Thus, microalgae have great potential for metabolic engineering efforts in the realm of biofuel and high-value products including direct engineering of the fatty acid or secondary metabolism using the natural genomic reservoir and as biotechnological platform for heterologous expression.


Phosphopantetheinyl transferases Fatty acid metabolism Assembly line synthases Natural products Microalgae 



This work was supported by the California Energy Commission (CILMSF 500-10-039) and Department of Energy (DOE DE-EE0003373).

Supplementary material

10811_2016_875_MOESM1_ESM.docx (5.2 mb)
ESM 1(DOCX 5300 kb)


  1. Ahmad I, Sharma AK, Daniell H, Kumar S (2015) Altered lipid composition and enhanced lipid production in green microalga by introduction of brassica diacylglycerol acyltransferase 2. Plant Biotech J 13:540–550CrossRefGoogle Scholar
  2. Alberts WA, Vagelos PR (1966) Acyl carrier protein. J Biol Chem 241:5201–5204PubMedGoogle Scholar
  3. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefPubMedGoogle Scholar
  4. Amiri-Jami M, Griffiths MW (2010) Recombinant production of omega-3 fatty acids in Escherichia coli using a gene cluster isolated from Shewanella baltica MAC1. J Appl Microbiol 109:1897–1905CrossRefPubMedGoogle Scholar
  5. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201CrossRefPubMedGoogle Scholar
  6. Beld J, Blatti JL, Behnke C, Mendez M, Burkart MD (2014a) Evolution of acyl-ACP thioesterases and β-ketoacyl-ACP synthases revealed by protein–protein interactions. J Appl Phycol 26:1619–1629CrossRefPubMedGoogle Scholar
  7. Beld J, Cang H, Burkart MD (2014b) Visualizing the chain-flipping mechanism in fatty-acid biosynthesis. Angew Chemie Int Ed 53:14456–14461CrossRefGoogle Scholar
  8. Beld J, Sonnenschein EC, Vickery CR, Noel JP, Burkart MD (2014c) The phosphopantetheinyl transferases: catalysis of a post-translational modification crucial for life. Nat Prod Rep 31:61–108CrossRefPubMedPubMedCentralGoogle Scholar
  9. Blatti JL, Beld J, Behnke C, Mendez M, Mayfield SP, Burkart MD (2012) Manipulating fatty acid biosynthesis in microalgae for biofuel through protein-protein interactions. PLoS One 7:e42949CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cai X, Herschap D, Zhu G (2005) Functional characterization of an evolutionarily distinct phosphopantetheinyl transferase in the apicomplexan Cryptosporidium parvum. Eukaryot Cell 4:1211–1220CrossRefPubMedPubMedCentralGoogle Scholar
  11. Copp JN, Neilan BA (2006) The phosphopantetheinyl transferase superfamily: phylogenetic analysis and functional implications in cyanobacteria. Appl Environ Microbiol 72:2298–2305CrossRefPubMedPubMedCentralGoogle Scholar
  12. Elhussein SA, Miernyk JA, Ohlrogge JB (1988) Plant holo-(acyl carrier protein) synthase. Biochem J 252:39–45CrossRefPubMedPubMedCentralGoogle Scholar
  13. Fernandez MD, Lamppa GK (1990) Acyl carrier protein (ACP) import into chloroplasts does not require the phosphopantetheine: evidence for a chloroplast holo-ACP synthase. Plant Cell 2:195–206CrossRefPubMedPubMedCentralGoogle Scholar
  14. Fichtlscherer F, Wellein C, Mittag M, Schweizer E (2000) A novel function of yeast fatty acid synthase. Subunit alpha is capable of self-pantetheinylation. Eur J Biochem 267:2666–71CrossRefPubMedGoogle Scholar
  15. Finking R, Solsbacher J, Konz D, Schobert M, Schafer A, Jahn D, Marahiel MA (2002) Characterization of a new type of phosphopantetheinyl transferase for fatty acid and siderophore synthesis in Pseudomonas aeruginosa. J Biol Chem 277:50293–50302CrossRefPubMedGoogle Scholar
  16. Foley TL, Rai G, Yasgar A, Baker HL, Attene-Ramos M, Kosa NM, Leister W, Burkart MD, Jadhav A, Simeonov A, Maloney DJ (2014) 4-(3-Chloro-5-(trifluoromethyl)pyridin-2-yl)-N-(4-methoxypyridin-2-yl)piperazine-1-carbothioamide (ML267), a potent inhibitor of bacterial phosphopantetheinyl transferase that attenuates secondary metabolism and thwarts bacterial growth. J Med Chem 57:1063–1078CrossRefPubMedPubMedCentralGoogle Scholar
  17. Gerhardt P, Murray R, Wood W, Krieg N (1994) Methods for general and molecular bacteriology. ASM Press, Washington D.CGoogle Scholar
  18. Gorman DS, Levine RP (1965) Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi. Proc Natl Acad Sci U S A 54:1665–9CrossRefPubMedPubMedCentralGoogle Scholar
  19. Griesbeck C, Kobl I, Heitzer M (2006) Chlamydomonas reinhardtii: a protein expression system for pharmaceutical and biotechnological proteins. Mol Biotechnol 34:213–223CrossRefPubMedGoogle Scholar
  20. Guan X, Chen H, Abramson A, Man H, Wu J, Yu O, Nikolau BJ (2015) A phosphopantetheinyl transferase that is essential for mitochondrial fatty acid biosynthesis. Plant J 84:718–732CrossRefPubMedGoogle Scholar
  21. Guschina IA, Harwood JL (2006) Lipids and lipid metabolism in eukaryotic algae. Prog Lipid Res 45:160–186CrossRefPubMedGoogle Scholar
  22. Haushalter RW, Worthington AS, Hur GH, Burkart MD (2008) An orthogonal purification strategy for isolating crosslinked domains of modular synthases. Bioorg Med Chem Lett 18:3039–3042CrossRefPubMedPubMedCentralGoogle Scholar
  23. Jones CS, Luong T, Hannon M, Tran M, Gregory JA, Shen Z, Briggs SP, Mayfield SP (2013) Heterologous expression of the C-terminal antigenic domain of the malaria vaccine candidate Pfs48/45 in the green algae Chlamydomonas reinhardtii. Appl Microbiol Biotechnol 97:1987–1995CrossRefPubMedGoogle Scholar
  24. Joseph-McCarthy D, Parris K, Huang A, Failli A, Quagliato D, Dushin EG, Novikova E, Severina E, Tuckman M, Petersen PJ, Dean C, Fritz CC, Meshulam T, DeCenzo M, Dick L, McFadyen IJ, Somers WS, Lovering F, Gilbert AM (2005) Use of structure-based drug design approaches to obtain novel anthranilic acid acyl carrier protein synthase inhibitors. J Med Chem 48:7960–7969CrossRefPubMedGoogle Scholar
  25. Joshi AK, Zhang L, Rangan VS, Smith S (2003) Cloning, expression, and characterization of a human 4′-phosphopantetheinyl transferase with broad substrate specificity. J Biol Chem 278:33142–33149CrossRefPubMedGoogle Scholar
  26. Kealey JT, Liu L, Santi DV, Betlach MC, Barr PJ (1998) Production of a polyketide natural product in nonpolyketide-producing prokaryotic and eukaryotic hosts. Proc Natl Acad Sci U S A 95:505–509CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kiefer F, Arnold K, Künzli M, Bordoli L, Schwede T (2009) The SWISS-MODEL Repository and associated resources. Nucleic Acids Res 37:D387–392CrossRefPubMedGoogle Scholar
  28. Kohli GS, John U, Van Dolah FM, Murray SA (2016) Evolutionary distinctiveness of fatty acid and polyketide synthesis in eukaryotes. ISME J 1–14Google Scholar
  29. Kosa NM, Haushalter RW, Smith AR, Burkart MD (2012) Reversible labeling of native and fusion-protein motifs. Nat Methods 9:981–987CrossRefPubMedPubMedCentralGoogle Scholar
  30. Ku J, Mirmira RG, Liu L, Santi DV (1997) Expression of a functional non-ribosomal peptide synthetase module in Escherichia coli by coexpression with a phosphopantetheinyl transferase. Chem Biol 4:203–207CrossRefPubMedGoogle Scholar
  31. Lambalot RH, Gehring AM, Flugel RS, Zuber P, LaCelle M, Marahiel MA, Reid R, Khosla C, Walsh CT (1996) A new enzyme transferases superfamily—the phosphopantetheinyl transferases. Chem Biol 3:923–936CrossRefPubMedGoogle Scholar
  32. Larkin MA, Blackshields G, Brown NP et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948CrossRefPubMedGoogle Scholar
  33. Li-Beisson Y, Beisson F, Riekhof W (2015) Metabolism of acyl-lipids in Chlamydomonas reinhardtii. Plant J 82:504–522CrossRefPubMedGoogle Scholar
  34. Merchant SS, Kropat J, Liu B, Shaw J, Warakanont J (2012) TAG, you’re it! Chlamydomonas as a reference organism for understanding algal triacylglycerol accumulation. Curr Opin Biotechnol 23:352–363CrossRefPubMedGoogle Scholar
  35. Nair DR, Ghosh R, Manocha A, Mohanty D, Saran S, Gokhale RS (2011) Two functionally distinctive phosphopantetheinyl transferases from amoeba Dictyostelium discoideum. PLoS One 6:e24262CrossRefPubMedPubMedCentralGoogle Scholar
  36. Nakano MM, Zuber P (1990) Molecular biology of antibiotic production in Bacillus. Crit Rev Biotechnol 10:223–240CrossRefPubMedGoogle Scholar
  37. Nakano MM, Corbell N, Besson J, Zuber P (1992) Isolation and characterization of sfp: a gene that functions in the production of the lipopeptide biosurfactant, surfactin, in Bacillus subtilis. Mol Gen Genet 232:313–321PubMedGoogle Scholar
  38. Rasala BA, Lee PA, Shen Z, Briggs SP, Mendez M, Mayfield SP (2012) Robust expression and secretion of Xylanase1 in Chlamydomonas reinhardtii by fusion to a selection gene and processing with the FMDV 2A peptide. PLoS One 7:e43349CrossRefPubMedPubMedCentralGoogle Scholar
  39. Rein KS, Borrone J (1999) Polyketides from dinoflagellates: origins, pharmacology and biosynthesis. Comp Biochem Physiol B 124:117–131CrossRefPubMedGoogle Scholar
  40. Roberts AA, Copp JN, Marahiel MA, Neilan BA (2009) The Synechocystis sp. PCC6803 Sfp-type phosphopantetheinyl transferase does not possess characteristic broad-range activity. Chembiochem 10:1869–1877CrossRefPubMedGoogle Scholar
  41. Rochaix J-D (1995) Chlamydomonas reinhardtii as the photosynthetic yeast. Annu Rev Genet 29:209–230CrossRefPubMedGoogle Scholar
  42. Sasso S, Pohnert G, Lohr M, Mittag M, Hertweck C (2012) Microalgae in the postgenomic era: a blooming reservoir for new natural products. FEMS Microbiol Rev 36:761–785CrossRefPubMedGoogle Scholar
  43. Savage LJ, Post-Beittenmiller D (1994) Phosphopantethenylated precursor acyl carrier protein is imported into spinach (Spinacia oleracea) chloroplasts. Plant Physiol 104:989–995CrossRefPubMedPubMedCentralGoogle Scholar
  44. Scranton MA, Ostrand JT, Fields FJ, Mayfield SP (2015) Chlamydomonas as a model for biofuels and bio-products production. Plant J 82:523–531CrossRefPubMedGoogle Scholar
  45. Shelest E, Heimerl N, Fichtner M, Sasso S (2015) Multimodular type I polyketide synthases in algae evolve by module duplications and displacement of AT domains in trans. BMC Genomics 16:1015. doi:10.1186/s12864-015-2222-9 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Shields JA, Rahman AS, Arthur CJ, Crosby J, Hothersall J, Simpson TJ, Thomas CM (2010) Phosphopantetheinylation and specificity of acyl carrier proteins in the mupirocin biosynthetic cluster. ChemBioChem 11:248–255CrossRefPubMedGoogle Scholar
  47. Silakowski B, Schairer HU, Ehret H, Kunze B, Weinig S, Nordsiek G, Brandt P, Blöcker H, Höfle G, Beyer S, Müller R (1999) New lessons for combinatorial biosynthesis from myxobacteria. J Biol Chem 274:37391–37399CrossRefPubMedGoogle Scholar
  48. Sunbul M, Zhang K, Yin J (2009) Using phosphopantetheinyl transferases for enzyme posttranslational activation, site specific protein labeling and identification of natural product biosynthetic gene clusters from bacterial genomes. In: Methods in enzymology, 1st edn. Elsevier., pp 255–275Google Scholar
  49. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  50. Tardif M, Atteia A, Specht M, Cogne G, Rolland N, Brugière S, Hippler M, Ferro M, Bruley C, Peltier G, Vallon O, Cournac L (2012) PredAlgo: a new subcellular localization prediction tool dedicated to green algae. Mol Biol Evol 29:3625–3639CrossRefPubMedGoogle Scholar
  51. Tran M, Zhou B, Pettersson PL, Gonzalez MJ, Mayfield SP (2009) Synthesis and assembly of a full-length human monoclonal antibody in algal chloroplasts. Biotechnol Bioeng 104:663–673PubMedGoogle Scholar
  52. Wang YY, Li YD, Liu JB, Ran XX, Guo YY, Ren NN, Chen X, Jiang H, Li YQ (2014) Characterization and evolutionary implications of the triad Asp-Xxx-Glu in group II phosphopantetheinyl transferases. PLoS One 9:e103031CrossRefPubMedPubMedCentralGoogle Scholar
  53. Wijffels RH, Kruse O, Hellingwerf KJ (2013) Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. Curr Opin Biotechnol 24:405–413CrossRefPubMedGoogle Scholar
  54. Worthington AS, Burkart MD (2006) One-pot chemo-enzymatic synthesis of reporter-modified proteins. Org Biomol Chem 4:44–46CrossRefPubMedGoogle Scholar
  55. Yalpani N, Altier DJ, Barbour E, Cigan AL, Scelonge CJ (2001) Production of 6-methylsalicylic acid by expression of a fungal polyketide synthase activates disease resistance in tobacco. Plant Cell 13:1401–1409CrossRefPubMedPubMedCentralGoogle Scholar
  56. Yang LM, Fernandez MD, Lamppa GK (1994) Acyl carrier protein (ACP) import into chloroplasts. Covalent modification by a stromal holoACP synthase is stimulated by exogenously added CoA and inhibited by adenosine 3′,5′-bisphosphate. Eur J Biochem 224:743–750CrossRefPubMedGoogle Scholar
  57. Yasgar A, Foley TL, Jadhav A, Inglese J, Burkart MD, Simeonov A (2010) A strategy to discover inhibitors of Bacillus subtilis surfactin-type phosphopantetheinyl transferase. Mol Biosyst 6:365–375CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Eva C. Sonnenschein
    • 1
    • 2
  • Yuan Pu
    • 1
  • Joris Beld
    • 1
    • 3
  • Michael D. Burkart
    • 1
  1. 1.Department of Chemistry and BiochemistryUniversity of California, San DiegoLa JollaUSA
  2. 2.DTU Systems BiologyTechnical University of DenmarkKgs. LyngbyDenmark
  3. 3.Department of Microbiology and Immunology, College of MedicineDrexel UniversityPhiladelphiaUSA

Personalised recommendations