Journal of Applied Phycology

, Volume 28, Issue 5, pp 2991–2998 | Cite as

Antifungal activity of carrageenan extracts from the red alga Chondracanthus teedei var. lusitanicus

  • Fabiana Soares
  • Chantal FernandesEmail author
  • Paulo Silva
  • Leonel Pereira
  • Teresa Gonçalves


Carrageenans extracted from Chondracanthus teedei var. lusitanicus were studied in order to determine their potential antifungal activity. FTIR-ATR and FT-Raman spectroscopic analysis confirmed the presence of a hybrid kappa/iota carrageenan belonging to the gametophyte phase and a hybrid xi/theta carrageenan in the tetrasporophyte phase. Kappa/iota and xi/theta carrageenan induced the formation of swollen hyphal segments in Alternaria infectoria, upon exposure to 125 and 60 μg mL−1, respectively. The observed phenotype was similar to those induced by antifungals targeting the fungal cell wall. When exposed to 87.5 μg mL−1 of kappa/iota carrageenan, Aspergillus fumigatus hyphae became shortened and highly branched, a phenotype commonly observed in response to antifungals. These morphological alterations were associated with a decrease of the β-glucan content in A. infectoria after exposure to 150 μg mL−1 of kappa/iota and to 100 μg mL−1 of xi/theta carrageenan. On the other hand, the chitin cell wall content of A. fumigatus decreased significantly upon exposure to 150 μg mL−1 of both extracts, which triggered an increase in the content of β-glucan. Overall, the present work shows that carrageenans extracted from C. teedei var. lusitanicus cause alterations on the A. fumigatus and A. infectoria cell walls, indicating a marked antifungal activity.


Chondracanthus teedei var. lusitanicus Rhodophyta-carrageenan Antifungal Chitin Glucan Vibrational spectroscopy 



We thank Prof. P. Ribeiro-Claro, Department of Chemistry, CICECO, University of Aveiro, for FTIR and FT-Raman spectroscopy.

This study was partly supported by FEDER funds through the Operational Programme Competitiveness Factors-COMPETE and national funds by FCT-Foundation for Science and Technology under the strategic project UID/NEU/04539/2013. C. Fernandes is a recipient of a postdoctoral fellowship from FCT-Fundação para a Ciência e Tecnologia (SFRH/BPD/63733/2009). The authors also acknowledge financial support from the Portuguese Foundation for Science and Technology through Institute of Marine Research (IMAR) and Marine and Environmental Sciences Centre (MARE).

Authors’ contributions

F. Soares performed the experimental work and wrote part of the manuscript; C. Fernandes collaborated, designed, and supervised the lab work and revised the manuscript; P. Silva collaborated and set up most of the lab techniques; L. Pereira designed part of the study and revised the data and the manuscript; T. Gonçalves designed part of the study, antifungal data interpretation, and manuscript revision.


  1. Anjos J, Fernandes C, Silva BM, Quintas C, Abrunheiro A, Gow NAR, Gonçalves T (2012) β(1,3)-Glucan synthase complex from Alternaria infectoria, a rare dematiaceous human pathogen. Med Mycol 50:716–725Google Scholar
  2. Baddley JW, Pappas PG, Smith AC, Moser SA (2003) Epidemiology of Aspergillus terreus at a university hospital. J Clin Microbiol 41:5525–5529CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bhakuni DS, Rawat DS (2005) Bioactive marine natural products. Springer, NetherlandsGoogle Scholar
  4. Bixler HJ, Porse H (2011) A decade of change in the seaweed hydrocolloids industry. J Appl Phycol 23:321–335CrossRefGoogle Scholar
  5. Bowman JC, Hicks PS, Kurtz MB, Rosen H, Schmatz DM, Liberator PA, Douglas CM (2002) The antifungal echinocandin caspofungin acetate kills growing cells of Aspergillus fumigatus in vitro. Antimicrob Agents Chemother 46:3001–3012CrossRefPubMedPubMedCentralGoogle Scholar
  6. Braga MRA (1985) Taxonomia e biologia da Gigartina teedii (Roth) Lamouroux (Rhodophyta, Gigartinales) no litoral do estado de São Paulo. Dissertation, Univ. São PauloGoogle Scholar
  7. Braga MRA (1990) Reproductive characteristics of Gigartina teedii (Roth) Lamouroux (Rhodophyta, Gigartinales), a turf-forming species - Field and laboratory culture studies. Bot Mar 33:401–409Google Scholar
  8. Campo VL, Kawano DF, da Silva DB, Carvalho I (2009) Carrageenans: biological properties, chemical modifications and structural analysis—a review. Carbohydr Polym 77:167–180CrossRefGoogle Scholar
  9. Cardoso SM, Carvalho LG, Silva PJ, Rodrigues MS, Pereira OR, Pereira L (2014) Bioproducts from macroalgae: a review with focus on the Iberian Peninsula. Curr Org Chem 18:896–917CrossRefGoogle Scholar
  10. Chopin T, Kerin BF, Mazerolle R (1999) Phycocolloid chemistry as a taxonomic indicator of phylogeny in the Gigartinales, Rhodophyceae: a review and current developments using Fourier transform infrared diffuse reflectance spectroscopy. Phycol Res 47:167–188CrossRefGoogle Scholar
  11. Fernandes C, Anjos J, Walker LA, Silva BM, Cortes L, Mota M, Munro CA, Gow NA, Gonçalves T (2014) Modulation of Alternaria infectoria cell wall chitin and glucan synthesis by cell wall synthase inhibitors. Antimicrob Agents Chemother 58:2894–2904CrossRefPubMedPubMedCentralGoogle Scholar
  12. Fernandes C, Prados-Rosales R, Silva B, Nakouzi-Naranjo A, Zuzarte M, Chatterjee S, Stark RE, Casadevall A, Gonçalves T (2016) Activation of melanin synthesis in Alternaria infectoria by antifungal drugs. Antimicrob Agents Chemother 60:1646–55CrossRefPubMedCentralGoogle Scholar
  13. Flemming RV, Walsh TJ, Anaissie EJ (2002) Emerging and less common fungal pathogens. Infect Dis Clin 16:915–933CrossRefGoogle Scholar
  14. Gayral P (1982) Les algues de côtes Françaises (Manche & Atlantique). Éditions Doin: 21–29Google Scholar
  15. Guiry MD (1984) Structure, life-history and hybridization of Atlantic Gigartina teedii (Rhodophyta) in culture. Brit Phycol J 19:37–55CrossRefGoogle Scholar
  16. Hajjeh RA, Sofair AN, Harrison LH, Lyon GM, Arthington-Skaggs BA, Mirza SA, Phelan M, Morgan J, Lee-Yang MA, Ciblak LE et al (2004) Incidence of bloodstream infections due to Candida species and in vitro susceptibilities of isolates collected from 1998 to 2000 in a population-based active surveillance program. J Clin Microbiol 42:1519–1527CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hector RF (1993) Compounds active against cell walls of medically important fungi. Clin Microbiol Rev 6:1–21CrossRefPubMedPubMedCentralGoogle Scholar
  18. Hohl TM, Feldmesser M (2007) Aspergillus fumigatus: principles of pathogenesis and host defense. Eukaryot Cell 6:1953–1963CrossRefPubMedPubMedCentralGoogle Scholar
  19. Holdt SL, Kraan S (2011) Bioactive compounds in seaweed: functional food applications and legislation. J Appl Phycol 23:543–597CrossRefGoogle Scholar
  20. Iwen PC, Rupp ME, Langnas AN, Reed EC, Hinrichs SH (1998) Invasive pulmonary aspergillosis due to Aspergillus terreus: 12-year experience and review of the literature. Clin Infect Dis 26:1092–1097CrossRefPubMedGoogle Scholar
  21. Jiao G, Yu G, Zhang J, Ewart HS (2011) Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Mar Drugs 9:196–223CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kalitnik AA, Byankina Barabanova AO, Nagorskaya VP, Reunov AV, Glazunov VP, Solov’eva TF, Yermak IM (2012) Low molecular weight derivatives of different carrageenan types and their antiviral activity. J Appl Phycol 25:65–72CrossRefGoogle Scholar
  23. Kalitnik AA, Anastyuk SD, Sokolova EV, Kravchenko AO, Khasina EI, Yermak IM (2015) Oligosaccharides of κ/β-carrageenan from the red alga Tichocarpus crinitus and their ability to induce interleukin 10. J Appl Phycol 28:545–553CrossRefGoogle Scholar
  24. König G, Wright A, Sticher O, Angerhofer C, Pezzuto J (1994) Biological activities of selected marine natural products. Planta Med 60:532–537CrossRefPubMedGoogle Scholar
  25. Lopes G, Pinto E, Andrade PB, Valentão P (2013) Antifungal activity of phlorotannins against dermatophytes and yeasts: approaches to the mechanism of action and influence on Candida albicans virulence factor. PLoS One 8:e72203CrossRefPubMedPubMedCentralGoogle Scholar
  26. Mayer AMS, Rodríguez AD, Berlinck RGS, Hamann MT (2007) Marine pharmacology in 2003–4: marine compounds with anthelmintic antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiplatelet, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems, and other miscellaneous mechanisms of action. Comp Biochem Physiol C 145:553–581Google Scholar
  27. McCandless EL, West JA, Guiry MD (1982) Carrageenan patterns in the Phyllophoraceae. Biochem Syst Biol 10:275–84Google Scholar
  28. McCandless EL, West JA, Guiry MD (1983) Carrageenan patterns in the Gigartinaceae. Biochem Syst Biol 11:175–82CrossRefGoogle Scholar
  29. Mirza SA, Phelan M, Rimland D, Graviss E, Hamill R, Brandt ME, Gardner T, Sattah M, Ponce de Leon G, Baughman W, Hajjeh RA (2003) The changing epidemiology of cryptococcosis: an update from population-based active surveillance in 2 large metropolitan areas, 1992–2000. Clin Infect Dis 36:789–794CrossRefPubMedGoogle Scholar
  30. Munro CA, Winter K, Buchan A, Henry K, Becker JM, Brown AJ, Bulawa CE, Gow NA (2001) Chs1 of Candida albicans is an essential chitin synthase required for synthesis of the septum and for cell integrity. Mol Microbiol 39:1414–1426Google Scholar
  31. Murray PM, Moane S, Collins C, Beletskaya T, Thomas OP, Duarte AWF, Nobre FS, Owoyemi IO, Pagnocca FC, Sette LD, McHugh E, Causse E, Pérez-López P, Feijoo G, Moreira MT, Rubiolo J, Leirós M, Botana LM, Pinteus S, Alves C, Horta A, Pedrosa R, Jeffryes C, Agathos SN, Allewaert C, Verween A, Vyverman W, Laptev I, Sineoky S, Bisio A, Manconi R, Ledda F, Marchi M, Pronzato R, Walsh DJ (2013) Sustainable production of biologically active molecules of marine based origin. Nat Biotechnol 30:839–850Google Scholar
  32. Muszkieta L, Aimanianda V, Mellado E, Gribaldo S, Alcàzar-Fuoli L, Szewczyk E, Prevost MC, Latgé JP (2014) Deciphering the role of the chitin synthase families 1 and 2 in the in vivo and in vitro growth of Aspergillus fumigatus by multiple gene targeting deletion. Cell Microbiol 16:1784–1805CrossRefPubMedGoogle Scholar
  33. Pangestuti R, Kim SK (2014) Biological activities of carrageenan. Adv Food Nutr Res 72:113–124CrossRefPubMedGoogle Scholar
  34. Patel S (2012) Therapeutic importance of sulfated polysaccharides from seaweeds: updating the recent findings. Biotech 3(2):171–185Google Scholar
  35. Perea S, Thomas F (2002) Patterson antifungal resistance in pathogenic fungi. Clin Infect Dis 35:1073–1080CrossRefPubMedGoogle Scholar
  36. Pereira L (2004) Estudos em macroalgas carragenófitas (Gigartinales, Rhodophyceae) da costa portuguesa—aspectos ecológicos, bioquímicos e citológicos. Dissertation, University of CoimbraGoogle Scholar
  37. Pereira L (2006) Identification of phycocolloids by vibrational spectroscopy. In: Critchley AT, Ohno M, Largo DB (Eds) World seaweed resources—an authoritative reference system. ETI Information Services LtdGoogle Scholar
  38. Pereira L (2012) Cytological and cytochemical aspects in selected carrageenophytes (Gigartinales, Rhodophyta). In: K. Heimann and C. Katsaros (eds) Advances in Algal Cell Biology. De Gruyter, Berlin, pp 81–104Google Scholar
  39. Pereira L, Mesquita JF (2004) Population studies and carrageenan properties of Chondracanthus teedei var. lusitanicus (Gigartinaceae, Rhodophyta). J Appl Phycol 16:369–383CrossRefGoogle Scholar
  40. Pereira L, van de Velde F (2011) Portuguese carrageenophytes: carrageenan composition and geographic distribution of eight species (Gigartinales, Rhodophyta). Carbohydr Polym 84:614–623CrossRefGoogle Scholar
  41. Pereira L, Sousa A, Coelho H, Amado AM, Ribeiro-Claro PJA (2003) Use of FTIR, FT-Raman and 13C-NMR spectroscopy for identification of some seaweed phycocolloids. Biomol Eng 20:223–228CrossRefPubMedGoogle Scholar
  42. Pereira L, van de Velde F, Mesquita JF (2007) Cytochemical studies on underutilized carrageenophytes (Gigartinales, Rhodophyta). BIBIEN 1:1–5Google Scholar
  43. Pereira L, Amado AM, Critchley AT, van de Velde F, Ribeiro-Claro PJA (2009) Identification of selected seaweed polysaccharides (phycocolloids) by vibrational spectroscopy (FTIR-ATR and FT-Raman). Food Hydrocoll 23:1903–1909CrossRefGoogle Scholar
  44. Perez R, Kaas R, Campello F, Arbault S, Baarbaroux O (1992) La Culture des algues marines dans le monde. IFREMER, PlouzaneGoogle Scholar
  45. Pfaller MA, Diekema DJ (2004) Rare and emerging opportunistic fungal pathogens: concern for resistance beyond Candida albicans and Aspergillus fumigatus. J Clin Microbiol 42:4419–4431CrossRefPubMedPubMedCentralGoogle Scholar
  46. Pinteus S, Alves C, Monteiro H, Araujo E, Horta A, Pedrosa R (2015) Asparagopsis armata and Sphaerococcus coronopifolius as a natural source of antimicrobial compounds. World J Microbiol Biotechnol 31:445–451CrossRefPubMedGoogle Scholar
  47. Prajapati VD, Pankaj MM, Girish KJ, Himanshu KS (2014) Carrageenan: a natural seaweed polysaccharide and its applications. Carbohydr Polym 105:97–112CrossRefPubMedGoogle Scholar
  48. Richardson MD, Warnock DW (2012) Fungal infection: diagnosis and management. Wiley-Blackwell, OxfordCrossRefGoogle Scholar
  49. Rudolph B (2000) Seaweed products: red algae of economic significance. In: Martin RE (ed) Marine & freshwater products handbook. Technomic Pub Co, Lancaster, pp 515–529Google Scholar
  50. Salvador N, Gómez Garreta A, Lavelli L, Ribera MA (2007) Antimicrobial activity of Iberian macroalgae. Sci Mar 71:101–114CrossRefGoogle Scholar
  51. Singh N (2001) Trends in the epidemiology of opportunistic fungal infections: predisposing factors and the impact of antimicrobial use practices. Clin Infect Dis 33:1692–1696CrossRefPubMedGoogle Scholar
  52. Stanley NF (1987) Production, properties and use of carrageenans. In: McHugh DJ (ed) Production and utilization of products from commercial seaweeds. FAO, Rome, pp 97–147Google Scholar
  53. Verwer PEB, van Duijn ML, Tavakol M, Bakker-Woudenberg IAJM, van de Sande WWJ (2012) Reshuffling of Aspergillus fumigatus cell wall components chitin and β-glucan under the influence of caspofungin or nikkomycin Z alone or in combination. Antimicrob Agents Chemother 56:1595–1598CrossRefPubMedPubMedCentralGoogle Scholar
  54. Walsh TJ, Groll A, Hiemenz J, Flemming R, Roilides E, Anaissie E (2004) Infections due to emerging and uncommon medically important fungal pathogens. Clin Microbiol Infect 10:48–66CrossRefPubMedGoogle Scholar
  55. Yermak IM, Khotimchenko YS (2003) In: Fingerman M, Nagabhushanam R (eds). Recent advances in marine biotechnology. Science Publishers: Enfield. pp 207–255Google Scholar
  56. Yuan H, Song J, Li X, Li N, Liu S (2010) Enhanced immunostimulatory and antitumor activity of different derivatives of κ-carrageenan oligosaccharides from Kappaphycus striatum. J Appl Phycol 23:59–65CrossRefGoogle Scholar
  57. Zinoun M, Cosson J (1996) Seasonal variation in growth and carrageenan content of Calliblepharis jubata (Rhodophyceae, Gigartinales) from the Normandy coast, France. J Appl Phycol 8:29–34CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Fabiana Soares
    • 1
  • Chantal Fernandes
    • 2
    Email author
  • Paulo Silva
    • 1
  • Leonel Pereira
    • 1
  • Teresa Gonçalves
    • 2
    • 3
  1. 1.MARE – Marine and Environmental Sciences Centre/IMAR – Institute of Marine Research, Department of Life SciencesUniversity of CoimbraCoimbraPortugal
  2. 2.CNC – Center for Neurosciences and Cell BiologyUniversity of CoimbraCoimbraPortugal
  3. 3.FMUC – Faculty of MedicineUniversity of CoimbraCoimbraPortugal

Personalised recommendations