Effects of the timing of a culture temperature reduction on the comprehensive metabolite profiles of Chlorella vulgaris

Abstract

This study investigated the effects of different temperature conditions on the comprehensive metabolite profiles of Chlorella vulgaris using gas chromatography–mass spectrometry coupled with multivariate statistical analysis. C. vulgaris cells cultivated at 20 °C were transferred to 10 °C incubators at different time points of cultivation [days 0 (TR0D), 7 (TR7D), and 14 (TR14D)], then they were cultivated at 10 °C until harvesting at day 21 to compare the growth and comprehensive metabolite profiles with those cultivated under a constant cultivation temperature of 20 °C (T20). There was no significant difference in algal cell growth between cultivation under the T20 and temperature reduction (TR) conditions. Algal fatty-acid profiles under TR were different from those of the T20 condition. Specifically, the contents of octadecanoic acid (C18:0), octadecenoic acid (C18:1), hexadecadienoic acid (C16:2), and octadecadienoic acid (C18:2) increased the most under TR0D. The relative levels of metabolites such as β-alanine, glutamine, glycine, isoleucine, proline, valine, and myo-inositol, which act as osmolytes, and bioactive compounds such as neophytadiene and ascorbic acid were increased under TR conditions on day 21. Among the metabolites, the contents of neophytadiene and ascorbic acid were further investigated, and the content of ascorbic acid was highest on day 14 under the TR7D condition, while the content of neophytadiene was highest on day 21 under the TR0D and TR14D condition. Therefore, we suggest that a TR from 20 to 10 °C could enhance the production in C. vulgaris cultures of bioactive fatty acids such as C18:1, C16:2, and C18:2 (TR0D), organic osmolytes such as β-alanine, glutamine, glycine, isoleucine, proline, valine, and myo-inositol (TR conditions), ascorbic acid (TR7D), and neophytadiene (TR0D and TR14D).

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Agrawal SC, Singh V (2001) Viability of dried cells, and survivability and reproduction under water stress, low light, heat, and UV exposure in Chlorella vulgaris. Isr J Plant Sci 49:27–32

    Article  Google Scholar 

  2. Beck EH, Fettig S, Knake C, Hartig K, Bhattarai T (2007) Specific and unspecific responses of plants to cold and drought stress. J Biosci 32:501–510

    CAS  Article  PubMed  Google Scholar 

  3. Borowitzka MA (1995) Microalgae as sources of pharmaceuticals and other biologically active compounds. J Appl Phycol 7:3–15

    CAS  Article  Google Scholar 

  4. Borowitzka MA (2013) High-value products from microalgae—their development and commercialisation. J Appl Phycol 25:743–756

    CAS  Article  Google Scholar 

  5. Brown MR, Miller KA (1992) The ascorbic acid content of eleven species of microalgae used in mariculture. J Appl Phycol 4:205–215

    CAS  Article  Google Scholar 

  6. Brown M, Mular M, Miller I, Farmer C, Trenerry C (1999) The vitamin content of microalgae used in aquaculture. J Appl Phycol 11:247–255

    CAS  Article  Google Scholar 

  7. Cabrita MT, Vale C, Rauter AP (2010) Halogenated compounds from marine algae. Mar Drugs 8:2301–2317

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Chen M, Tang H, Ma H, Holland TC, Ng K, Salley SO (2011) Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta. Bioresource Technol 102:1649–1655

    CAS  Article  Google Scholar 

  9. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    CAS  Article  PubMed  Google Scholar 

  10. Converti A, Casazza AA, Ortiz EY, Perego P, Del Borghi M (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process 48:1146–1151

    CAS  Article  Google Scholar 

  11. Dauta A, Devaux J, Piquemal F, Boumnich L (1990) Growth rate of four freshwater algae in relation to light and temperature. Hydrobiologia 207:221–226

    Article  Google Scholar 

  12. Dejoye C, Vian MA, Lumia G, Bouscarle C, Charton F, Chemat F (2011) Combined extraction processes of lipid from Chlorella vulgaris microalgae: microwave prior to supercritical carbon dioxide extraction. Int J Mol Sci 12:9332–9341

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4:215–223

    CAS  Article  Google Scholar 

  14. Haghjou MM, Shariati M, Smirnoff N (2009) The effect of acute high light and low temperature stresses on the ascorbate–glutathione cycle and superoxide dismutase activity in two Dunaliella salina strains. Physiol Plantarum 135:272–280

    CAS  Article  Google Scholar 

  15. Herrero M, Ibáñez E, Cifuentes A, Reglero G, Santoyo S (2006) Dunaliella salina microalga pressurized liquid extracts as potential antimicrobials. J Food Protect 69:2471–2477

    CAS  Google Scholar 

  16. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    CAS  Article  PubMed  Google Scholar 

  17. Huntley ME, Redalje DG (2007) CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitig Adapt Strat Global Change 12:573–608

    Article  Google Scholar 

  18. Khalil ZI, Aske MM, El-Sayed S, Kobbia IA (2010) Effect of pH on growth and biochemical responses of Dunaliella bardawil and Chlorella ellipsoidea. World J Microb Biot 26:1225–1231

    CAS  Article  Google Scholar 

  19. Khoeyi ZA, Seyfabadi J, Ramezanpour Z (2012) Effect of light intensity and photoperiod on biomass and fatty acid composition of the microalgae, Chlorella vulgaris. Aquacult Int 20:41–49

    Article  Google Scholar 

  20. Kim J, Lee C (2005) Systemic optimization of microalgae for bioactive compound production. Biotechnol Bioproc Eng 10:418–424

    CAS  Article  Google Scholar 

  21. Laurens LM, Quinn M, Van Wychen S, Templeton DW, Wolfrum EJ (2012) Accurate and reliable quantification of total microalgal fuel potential as fatty acid methyl esters by in situ transesterification. Anal Bioanal Chem 403:167–178

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Lee SY, Kim SH, Hyun SH, Suh HW, Hong SJ, Cho BK, Lee CG, Lee HG, Choi HK (2014) Fatty acids and global metabolites profiling of Dunaliella tertiolecta by shifting culture conditions to nitrate deficiency and high light at different growth phases. Process Biochem 49:996–1004

    CAS  Article  Google Scholar 

  23. Li F, Bian CS, Xu JF, Pang WF, Liu J, Duan SG, Lei ZG, Jiwan P, Jin LP (2015) Cloning and functional characterization of SAD genes in potato. PLoS One 10:e0122036

    Article  PubMed  PubMed Central  Google Scholar 

  24. Liu S, Ruan W, Li J, Xu H, Wang J, Gao Y, Wang J (2008) Biological control of phytopathogenic fungi by fatty acids. Mycopathologia 166:93–102

    CAS  Article  PubMed  Google Scholar 

  25. Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232

    CAS  Article  Google Scholar 

  26. Morimoto T, Nagatsu A, Murakami N, Sakakibara J, Tokuda H, Nishino H, Iwashima A (1995) Anti-tumour-promoting glyceroglycolipids from the green alga, Chlorella vulgaris. Phytochemistry 40:1433–1437

    CAS  Article  PubMed  Google Scholar 

  27. Nappo M, Berkov S, Codina C, Avila C, Messina P, Zupo V, Bastida J (2009) Metabolite profiling of the benthic diatom Cocconeis scutellum by GC-MS. J Appl Phycol 21:295–306

    CAS  Article  Google Scholar 

  28. Olofsson M, Lamela T, Nilsson E, Bergé JP, Del Pino V, Uronen P, Legrand C (2012) Seasonal variation of lipids and fatty acids of the microalgae Nannochloropsis oculata grown in outdoor large-scale photobioreactors. Energies 5:1577–1592

    CAS  Article  Google Scholar 

  29. Plaza M, Santoyo S, Jaime L, Avalo B, Cifuentes A, Reglero G, García-Blairsy Reina G, Señoráns FJ, Ibáñez E (2012) Comprehensive characterization of the functional activities of pressurized liquid and ultrasound-assisted extracts from Chlorella vulgaris. Food Sci Technol 46:245–253

    CAS  Google Scholar 

  30. Praveenkumar R, Shameera K, Mahalakshmi G, Akbarsha MA, Thajuddin N (2012) Influence of nutrient deprivations on lipid accumulation in a dominant indigenous microalga Chlorella sp., BUM11008: evaluation for biodiesel production. Biomass Bioenerg 37:60–66

    CAS  Article  Google Scholar 

  31. Raven JA, Geider RJ (1988) Temperature and algal growth. New Phytol 110:441–461

    CAS  Article  Google Scholar 

  32. Rodríguez-Meizoso I, Jaime L, Santoyo S, Cifuentes A, García-Blairsy Reina G, Senorans F, Ibáñez E (2008) Pressurized fluid extraction of bioactive compounds from Phormidium species. J Agric Food Chem 56:3517–3523

    Article  PubMed  Google Scholar 

  33. Sharma KK, Schuhmann H, Schenk PM (2012) High lipid induction in microalgae for biodiesel production. Energies 5:1532–1553

    CAS  Article  Google Scholar 

  34. Singh J, Gu S (2010) Commercialization potential of microalgae for biofuels production. Renew Sust Energ Rev 14:2596–2610

    CAS  Article  Google Scholar 

  35. Singh S, Kate BN, Banerjee U (2005) Bioactive compounds from cyanobacteria and microalgae: an overview. Crit Rev Biotechnol 25:73–95

    CAS  Article  PubMed  Google Scholar 

  36. Singh L, Poddar N, Dar T, Rahman S, Kumar R, Ahmad F (2011) Forty years of research on osmolyte-induced protein folding and stability. J Iran Chem Soc 8:1–23

    CAS  Article  Google Scholar 

  37. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    CAS  Article  PubMed  Google Scholar 

  38. Wen ZY, Chen F (2003) Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnol Adv 21:273–294

    CAS  Article  PubMed  Google Scholar 

  39. Widjaja A, Chien C, Ju Y (2009) Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. J Taiwan Inst Chem Eng 40:13–20

    CAS  Article  Google Scholar 

  40. Xiao Y, Zhang J, Cui J, Feng Y, Cui Q (2013) Metabolic profiles of Nannochloropsis oceanica IMET1 under nitrogen-deficiency stress. Bioresource Technol 130:731–738

    CAS  Article  Google Scholar 

  41. Xin L, Hong-Ying H, Yu-Ping Z (2011) Growth and lipid accumulation properties of a freshwater microalga Scenedesmus sp. under different cultivation temperature. Bioresource Technol 102:3098–3102

    Article  Google Scholar 

  42. Yeh K, Chang J (2012) Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31. Bioresource Technol 105:120–127

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Core Technology Development Program for the Oceans and the Polar Regions of the National Research Foundation (NRF) funded by the Ministry of Science, ICT, and Future Planning (NRF-2011-0021055) and by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (NRF-2015R1A5A1008958).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hyung-Kyoon Choi.

Additional information

Hye Min Ahn and So-Hyun Kim contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Schematic diagram of the metabolic pathway and relative levels of the main components of C. vulgaris. This diagram was modified from pathways presented in the KEGG database (http://www.genome.jp/kegg/). Data are mean and SD values for six measurements (n = 6, biological triplicate and experiment duplicate). ANOVA and post-hoc Tukey’s tests (p < 0.05) were conducted, and different superscript letters indicate significant differences. The error bar indicate SD values. (PDF 235 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ahn, H.M., Kim, S., Hyun, S. et al. Effects of the timing of a culture temperature reduction on the comprehensive metabolite profiles of Chlorella vulgaris . J Appl Phycol 28, 2641–2650 (2016). https://doi.org/10.1007/s10811-016-0817-4

Download citation

Keywords

  • Comprehensive metabolite profile
  • Chlorella vulgaris
  • Chlorophyta
  • GC–MS
  • Temperature reduction