Advertisement

Journal of Applied Phycology

, Volume 28, Issue 5, pp 3057–3070 | Cite as

Characterization of newly developed expressed sequence tag-derived microsatellite markers revealed low genetic diversity within and low connectivity between European Saccharina latissima populations

  • Jaromir GuzinskiEmail author
  • Stéphane Mauger
  • J. Mark Cock
  • Myriam Valero
Article

Abstract

The kelp Saccharina latissima is a species of high ecological and economic importance. We developed a novel set of S. latissima-specific genetic markers that will find applications in conservation biology, biodiversity assessment, and commercial exploitation of this macroalga. Thirty-two expressed sequence tag (EST)-derived microsatellite markers (SSRs) were developed and characterized in this study using publically available EST sequences. Twenty-seven percent of the 7064 analyzed ESTs contained repeat motifs, and polymerase chain reaction (PCR) amplification primers were designed for 96 selected loci. Fifty-one (53 %) of the primer pairs amplified their target loci, of which 32 (33 %) were polymorphic within a sample of 96 S. latissima sporophytes collected from six localities distributed along the European Atlantic coast from Southern Brittany (France) to Spitzbergen (Norway). The 32 loci harbored moderate levels of polymorphism with 2–13 alleles per locus (mean 5.4). The 25 loci that were retained for population genetic analyses revealed substantial genetic differentiation among the European populations (pairwise F ST values ranging from 0.077 to 0.562) that did not follow any pattern of isolation by distance. In addition, within-population genetic diversity was generally low (Hs < 0.323). Two non-mutually exclusive hypotheses were proposed to explain this low diversity pattern: (1) lower variability of the EST-derived microsatellites compared to the random distribution of SSRs developed from genomic DNA since the former are frequently located in coding regions, which are generally less variable, or (2) reduced effective population size of S. latissima. The particularly high genetic differentiation between the French and Scandinavian S. latissima populations is in agreement with the reported ecotypic differentiation, which may reflect an important resource for genetic improvement. The pattern of genetic diversity revealed in this study thus suggests that care should be taken to avoid the transfer of strains between different geographic regions.

Keywords

Saccharina latissima Phaeophyceae NE Atlantic EST Population genetic structure Simple sequence repeat 

Notes

Acknowledgments

This work benefited from the support of the French Government through the National Research Agency with regards to an investment expenditure program IDEALG, which reference is stated as ANR-10-BTBR-04, and was carried out within the context of the international research network “Diversity, Evolution and Biotechnology of Marine Algae” (GDRI No. 0803). The authors are deeply indebted to the Service Mer & Observation (SMO) of Roscoff, G. Cervin, and J. Coyer for sampling. The authors would also like to thank Gildas Le Corguille of the ABiMS Platform, Roscoff for his help with bioinformatics analyses. We are most grateful to the Biogenouest Genomics core facility for its technical support. We also would like to thank the two anonymous reviewers for their suggestions and comments.

Supplementary material

10811_2016_806_MOESM1_ESM.docx (13 kb)
ESM 1 (DOCX 12 kb)
10811_2016_806_MOESM2_ESM.pdf (66 kb)
Supplementary Table 1 (PDF 65 kb)
10811_2016_806_MOESM3_ESM.pdf (67 kb)
Supplementary Table 2 (PDF 66 kb)
10811_2016_806_MOESM4_ESM.pdf (100 kb)
Supplementary Table 3 (PDF 100 kb)
10811_2016_806_MOESM5_ESM.pdf (74 kb)
Supplementary Fig. 1 (PDF 74 kb)

References

  1. Alberto F, Raimondi PT, Reed DC, Coelho NC, Leblois R, Whitmer A, Serrão EA (2010) Habitat continuity and geographic distance predict population genetic differentiation in giant kelp. Ecology 91:49–56CrossRefPubMedGoogle Scholar
  2. Alberto F, Raimondi PT, Reed DC, Watson JR, Siegel DA, Mitarai S, Coelho N, Serrão EA (2011) Isolation by oceanographic distance explains genetic structure for Macrocystis pyrifera in the Santa Barbara Channel. Mol Ecol 20:2543–2554CrossRefPubMedGoogle Scholar
  3. Andersen SG, Steen H, Christie H, Fredriksen S, Moy FE (2011) Seasonal patterns of sporophyte growth, fertility, fouling, and mortality of Saccharina latissima in Skagerrak, Norway: implications for forest recovery. J Mar Biol 2011:1–8CrossRefGoogle Scholar
  4. Andersen SG (2013) Patterns of Saccharina latissima recruitment. PLOS One 8(12):e81092CrossRefPubMedCentralGoogle Scholar
  5. Assis J, Coelho NC, Lamy T, Valero M, Alberto F, Serrão EA (2016) Deep reefs are climatic refugia for genetic diversity of marine forests. J Biogeogr. doi: 10.1111/jbi.12677
  6. Bartsch I, Wiencke C, Bischof K, Buchholz CM, Buck BH, Eggert A, Feuerpfeil P, Hanelt D, Jacobsen S, Karez R, Karsten U, Molis M, Roleda MY, Schubert H, Schumann R, Valentin K, Weinberger F, Wiese J (2008) The genus Laminaria sensu lato: recent insights and developments. Eur J Phycol 43:1–86CrossRefGoogle Scholar
  7. Bekkby T, Moy FE (2011) Developing spatial models of sugar kelp (Saccharina latissima) potential distribution under natural conditions and areas of its disappearance in Skagerrak. Estuar Coast Shelf Sci 95:477–483CrossRefGoogle Scholar
  8. Billot C, Engel CR, Rousvoal S, Kloareg B, Valero M (2003) Current patterns, habitat discontinuities and population genetic structure: the case of the kelp Laminaria digitata in the English Channel. Mar Ecol Prog Ser 253:111–121CrossRefGoogle Scholar
  9. Bolton JJ, Germann I, Luning K (1983) Hybridization between Atlantic and Pacific representatives of the Simplices section of Laminaria (Phaeophyta). Phycologia 22:133–140CrossRefGoogle Scholar
  10. Bouck A, Vision T (2007) The molecular ecologist’s guide to expressed sequence tags. Mol Ecol 16:907–924CrossRefPubMedGoogle Scholar
  11. Brookfield J (1996) A simple new method for estimating null allele frequency from heterozygote deficiency. Mol Ecol 5:453–455CrossRefPubMedGoogle Scholar
  12. Cie DK, Edwards MS (2011) Vertical distribution of kelp zoospores. Phycologia 50:340–350CrossRefGoogle Scholar
  13. Coleman MA, Roughan M, Macdonald HS, Connell SD, Gillanders BM, Kelaher BP, Steinberg PD (2011) Variation in the strength of continental boundary currents determines continent-wide connectivity in kelp. J Ecol 99:1026–1032CrossRefGoogle Scholar
  14. Couceiro L, Robuchon M, Destombe C, Valero M (2013) Management and conservation of the kelp species Laminaria digitata: using genetic tools to explore the potential exporting role of the MPA “Parc naturel marin d’Iroise”. Aquat Living Resour 26:197–205CrossRefGoogle Scholar
  15. Cubry P, Pujade‐Renaud V, Garcia D, Espeout S, Le Guen V, Granet F, Seguin M (2014) Development and characterization of a new set of 164 polymorphic EST‐SSR markers for diversity and breeding studies in rubber tree (Hevea brasiliensis Müll. Arg.). Plant Breed 133:419–426CrossRefGoogle Scholar
  16. Dong P, Wei YM, Chen GY, Li W, Wang JR, Nevo E, Zheng YL (2009) EST‐SSR diversity correlated with ecological and genetic factors of wild emmer wheat in Israel. Hereditas 146:1–10CrossRefPubMedGoogle Scholar
  17. Durrant HM, Burridge CP, Kelaher BP, Barrett NS, Edgar GJ, Coleman MA (2014) Implications of macroalgal isolation by distance for networks of marine protected areas. Conserv Biol 28:438–445CrossRefPubMedGoogle Scholar
  18. Edwards K, Barker J, Daly A, Jones C, Karp A (1996) Microsatellite libraries enriched for several microsatellite sequences in plants. Biotechniques 20:758–780PubMedGoogle Scholar
  19. Ellis JR, Burke JM (2007) EST-SSRs as a resource for population genetic analyses. Heredity 99:125–132CrossRefPubMedGoogle Scholar
  20. Fraser CI, Thiel M, Spencer HG, Waters JM (2010) Contemporary habitat discontinuity and historic glacial ice drive genetic divergence in Chilean kelp. BMC Evol Biol 10:203CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gerard VA, Du Bois K (1988) Temperature ecotypes near the southern boundary of the kelp Laminaria saccharina. Mar Biol 97:575–580CrossRefGoogle Scholar
  22. Gerard VA (1988) Ecotypic differentiation in light-related traits of the kelp Laminaria saccharina. Mar Biol 97:25–36CrossRefGoogle Scholar
  23. Goudet J (2014) hierfstat: estimation and tests of hierarchical F-statistics. R package version 0.04-14Google Scholar
  24. Guichoux E, Lagache L, Wagner S, Chaumeil P, Léger P, Lepais O, Lepoittevin C, Malausa T, Revardel E, Salin F (2011) Current trends in microsatellite genotyping. Mol Ecol Resour 11:591–611CrossRefPubMedGoogle Scholar
  25. Gupta P, Rustgi S, Sharma S, Singh R, Kumar N, Balyan H (2003) Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Mol Genet Genomics 270:315–323CrossRefPubMedGoogle Scholar
  26. Heinrich S, Valentin K, Frickenhaus S, John U, Wiencke C (2012) Transcriptomic analysis of acclimation to temperature and light stress in Saccharina latissima (Phaeophyceae). Plos One 7(8):e44342CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. Phil Trans R Soc Lond B 359:183–195CrossRefGoogle Scholar
  28. Holderegger R, Kamm U, Gugerli F (2006) Adaptive vs. neutral genetic diversity: implications for landscape genetics. Landscape Ecol 21:797–807CrossRefGoogle Scholar
  29. Holleley CE, Geerts PG (2009) Multiplex Manager 1.0: a cross-platform computer program that plans and optimizes multiplex PCR. Biotechniques 46:511–517CrossRefPubMedGoogle Scholar
  30. Hu J, Wang L, Li J (2011) Comparison of genomic SSR and EST-SSR markers for estimating genetic diversity in cucumber. Biol Plantarum 55:577–580CrossRefGoogle Scholar
  31. Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405CrossRefPubMedGoogle Scholar
  32. Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94CrossRefPubMedPubMedCentralGoogle Scholar
  33. Keenan K, McGinnity P, Cross TF, Crozier WW, Prodöhl PA (2013) diveRsity: an R package for the estimation and exploration of population genetics parameters and their associated errors. Method Ecol Evol 4:782–788CrossRefGoogle Scholar
  34. Kim KS, Ratcliffe ST, French BW, Liu L, Sappington TW (2008) Utility of EST-derived SSRs as population genetics markers in a beetle. J Hered 99:112–124CrossRefPubMedGoogle Scholar
  35. Kinlan BP, Gaines SD (2003) Propagule dispersal in marine and terrestrial environments: a community perspective. Ecology 84:2007–2020CrossRefGoogle Scholar
  36. Klinger T (2015) The role of seaweeds in the modern ocean. Perspect Phycol:31–39Google Scholar
  37. Kraemer P, Gerlach G (2013) Demerelate: functions to calculate relatedness on diploid genetic data. R package version 0.8-1Google Scholar
  38. Li Y-C, Korol AB, Fahima T, Nevo E (2004) Microsatellites within genes: structure, function, and evolution. Mol Biol Evol 21:991–1007CrossRefPubMedGoogle Scholar
  39. Liu F, Wang X, Yao J, Fu W, Duan D (2010) Development of expressed sequence tag-derived microsatellite markers for Saccharina (Laminaria) japonica. J Appl Phycol 22:109–111CrossRefGoogle Scholar
  40. Liu F, Wang F, Duan D (2012) EST-SSR markers derived from Laminaria digitata and its transferable application in Saccharina japonica. J Appl Phycol 24:501–505CrossRefGoogle Scholar
  41. Mauger S, Couceiro L, Valero M (2012) A simple and cost-effective method to synthesize an internal size standard amenable to use with a 5-dye system. Prime Res Biotechnol 2:40–46Google Scholar
  42. Müller R, Wiencke C, Bischof K (2008) Interactive effects of UV radiation and temperature on microstages of Laminariales (Phaeophyceae) from the Arctic and North Sea. Clim Res 37:203–213CrossRefGoogle Scholar
  43. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  44. Neiva J, Serrão EA, Assis J, Pearson GA, Coyer JA, Olsen JL, Hoarau G, Valero M (2016) Climate oscillations, range shifts and phylogeographic patterns of North Atlantic Fucaceae. In: Hu Z-H, Fraser CI (eds) Seaweed phylogeography. Springer, Dordrecht, pp 278–308Google Scholar
  45. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2015) vegan: Community Ecology Package. R package version 2.3-0Google Scholar
  46. Olischläger M, Iniguez C, Gordillo FJ, Wiencke C (2014) Biochemical composition of temperate and Arctic populations of Saccharina latissima after exposure to increased pCO2 and temperature reveals ecotypic variation. Planta 240:1213–1224CrossRefPubMedPubMedCentralGoogle Scholar
  47. Paquette SR (2012) PopGenKit: useful functions for (batch) file conversion and data resampling in microsatellite datasets. R package version 1.0Google Scholar
  48. Pehlke C, Bartsch I (2008) Changes in depth distribution and biomass of sublittoral seaweeds at Helgoland (North Sea) between 1970 and 2005. Clim Res 37:135–147CrossRefGoogle Scholar
  49. Peteiro C, Freire Ó (2013) Biomass yield and morphological features of the seaweed Saccharina latissima cultivated at two different sites in a coastal bay in the Atlantic coast of Spain. J Appl Phycol 25:205–213CrossRefGoogle Scholar
  50. Provan J (2013) The effects of past, present and future climate change on range-wide genetic diversity in northern North Atlantic marine species. Front Biogeogr 5:60–66Google Scholar
  51. Core Team R (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  52. Rice WR (1989) Analyzing tables of statistical tests. Evolution:223-225Google Scholar
  53. Robuchon M, Le Gall L, Mauger S, Valero M (2014) Contrasting genetic diversity patterns in two sister kelp species co-distributed along the coast of Brittany, France. Mol Ecol 23:2669–2685CrossRefPubMedGoogle Scholar
  54. Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228PubMedPubMedCentralGoogle Scholar
  55. Rousset F (2008) genepop’007: a complete re‐implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106CrossRefPubMedGoogle Scholar
  56. Rozen S, Skaletsky H (1999) Primer3 on the WWW for general users and for biologist programmers. In: Misener S, Krawetz S (eds) Bioinformatics methods and protocols, vol 132. Methods in molecular biology. Humana Press, pp 365-386Google Scholar
  57. Shi Y, Yang G, Liu Y, Liao M, Li X, Cong Y (2007) Development of 18 polymorphic microsatellite DNA markers of Laminaria japonica (Phaeophyceae). Mol Ecol Notes 7:620–622CrossRefGoogle Scholar
  58. van Strien MJ, Holderegger R, Van Heck HJ (2015) Isolation-by-distance in landscapes: considerations for landscape genetics. Heredity 114:27–37CrossRefPubMedGoogle Scholar
  59. Teshome A, Bryngelsson T, Dagne K, Geleta M (2015) Assessment of genetic diversity in Ethiopian field pea (Pisum sativum L.) accessions with newly developed EST-SSR markers. BMC Genet 16(1):102CrossRefPubMedPubMedCentralGoogle Scholar
  60. Thiel M, Gutow L (2005) The ecology of rafting in the marine environment. I. The floating substrata. Oceanog Mar Biol: Annu Rev 42:181–264Google Scholar
  61. Tseng C (2001) Algal biotechnology industries and research activities in China. J Appl Phycol 13:375–380CrossRefGoogle Scholar
  62. Valero M, Destombe C, Mauger S, Ribout C, Engel CR, Daguin-Thiebaut C, Tellier F (2011) Using genetic tools for sustainable management of kelps: a literature review and the example of Laminaria digitata. Cahi Biol Mar 52:467–483Google Scholar
  63. Van Oosterhout C, Hutchinson WF, Wills DP, Shipley P (2004) MICRO‐CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  64. Wahl M, Molis M, Hobday AJ, Dudgeon S, Neumann R, Steinberg P, Campbell AH, Marzinelli E, Connell S (2015) The responses of brown macroalgae to environmental change from local to global scales: direct versus ecologically mediated effects. Perspect Phycol 2:11–29CrossRefGoogle Scholar
  65. Wang G, Tan X, Shen J, Li J, Zhang L, Sun J, Wang B, Weng M, Liu T (2011) Development of EST-SSR primers and their practicability test for Laminaria. Acta Oceanol Sinica 30:112–117Google Scholar
  66. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  67. Woodhead M, Russell J, Squirrell J, Hollingsworth PM, Mackenzie K, Gibby M, Powell W (2005) Comparative analysis of population genetic structure in Athyrium distentifolium (Pteridophyta) using AFLPs and SSRs from anonymous and transcribed gene regions. Mol Ecol 14:1681–1695CrossRefPubMedGoogle Scholar
  68. Ye N, Zhang X, Miao M, Fan X, Zheng Y, Xu D, Wang J, Zhou L, Wang D, Gao Y (2015) Saccharina genomes provide novel insight into kelp biology. Nat Commun 6:6986. doi: 10.1038/ncomms7986 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Zane L, Bargelloni L, Patarnello T (2002) Strategies for microsatellite isolation: a review. Mol Ecol 11:1–16CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Jaromir Guzinski
    • 1
    • 3
    Email author
  • Stéphane Mauger
    • 1
  • J. Mark Cock
    • 2
  • Myriam Valero
    • 1
  1. 1.CNRS, UPMC, Sorbonne Universités, PUCCH, UACH, UMI 3614, Evolutionary Biology and Evolution of AlgaeRoscoffFrance
  2. 2.CNRS, UPMC, Sorbonne Universités, UMR8227, Laboratoire Végétaux Marins et Biomolécules, Équipe Génétique des AlguesRoscoffFrance
  3. 3.CNRS, UPMC, Sorbonne Universités, UMR7144, Adaptation et diversité en Milieu Marin, Équipe Diversité et Connectivité dans le Paysage Marin CôtierRoscoffFrance

Personalised recommendations