Skip to main content
Log in

Effect of gibberellic acid on the cyanobacterium Nostoc linckia

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

We investigated the influence of gibberellic acid (GA3; 0, 1, 10, and 100 μM) on Nostoc linckia culture at 7, 14, and 21 days. The fresh and dry weight of N. linckia was increased considerably by the 10 and 100 μM GA3 treatments. A reduction in heterocyst frequency was observed in cultures treated with 1 and 10 μM GA3. Adding GA3 to N. linckia culture had a little effect on cell size. The amount of chlorophyll a and carotenoids decreased at all concentrations of GA3. The amount of phycocyanin increased up to twofold in 7-day-old culture treated with 1 μM GA3, and similar changes were observed for allophycocyanin and phycoerythrin content after 7 days. The effect of GA3 on reducing sugar content was different and was dependent on the growth period. A reduction in soluble sugar content was detected after GA3 application in 7- and 14-day-old cyanobacteria. Cultures treated with GA3 had a higher protein content after 14 days and a lower protein content after 7 and 21 days, and reduced nitrogenase activity after 7, 14, and 21 days. Our data show that GA3 application can be a suitable and inexpensive way to increase N. linckia biomass and phycobiliprotein production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Bennett A, Bogorad L (1973) Complementary chromatic adaptation in a filamentous blue-green algae. J Cell Biol 58:419–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bora PK, Sarma CM (2006) Effect of gibberellic acid and cycocel on growth, yield and protein content of pea. Asian J Plant Sci 5:324–330

    Article  CAS  Google Scholar 

  • Boussiba S, Richmond AE (1980) C-phycocyanin as a storage protein in blue-green alga Spirulina platensis. Arch Microbiol 25:143–147

  • Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. J Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Burkiewicz K (1987) The influence of gibberellins and cytokinins on the growth of some unicellular Baltic algae. Bot Mar 30:63–69

    Article  CAS  Google Scholar 

  • Chen W, Zheng D, Feng N, Liu T, Liu Y, Gong S, Cui H, Xiang H (2015) The effects of gibberellins and mepiquat chloride on nitrogenase activity in Bradyrhizobium japonicum. Acta Physiol Plant 37:1723

    Article  Google Scholar 

  • Chow F, Pedersén M, Oliveira MC (2013) Modulation of nitrate reductase activity by photosynthetic electron transport chain and nitric oxide balance in the red macroalga Gracilaria chilensis (Gracilariales, Rhodophyta). J Appl Phycol 25:1847–1853

    Article  CAS  Google Scholar 

  • Dere S, Gunes T, Sivacl R (1998) Spectrophotometric determination of chlorophyll a, b and total carotenoid contents of some algal species using different solvents. Tr J Bot 22:13–17

    Google Scholar 

  • Desikachary T (1959) Cyanophyta. Indian Council of Agricultural Research, New Delhi

    Google Scholar 

  • Fales FW (1951) The assimilation and degradation of carbohydrates by yeast cells. J Biol Chem 193:113–124

    CAS  PubMed  Google Scholar 

  • Falkowska M, Pietryczuk A, Piotrowska A, Bajguz A, Grygoruk A, Czerpak R (2011) The effect of gibberellic acid (GA3) on growth, metal biosorption and metabolism of the green algae Chlorella vulgaris (Chlorophyceae) Beijerinck exposed to cadmium and lead stress. Pol J Environ Stud 20:53–59

    Google Scholar 

  • Grossman AR, Schaefer MR, Chiang GG, Collier JL (1994) The responses of cyanobacteria to environmental conditions: light and nutrients. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer, Dordrecht, pp 641–675

    Chapter  Google Scholar 

  • Huttly AK, Phillips AL (1995) Gibberellin regulated plant genes. Physiol Plant 95:310–317

    Article  CAS  Google Scholar 

  • Jennings RC, McComb AJ (1967) Gibberellin in red alga Hypnea musciformis (Wulf.) Lamour. Nature 215:872–873

  • John DM, Whitton BA, Brook AJ (2002) The freshwater algal flora of the British Isles: an identification guide to freshwater and terrestrial algae. Cambridge University Press, Cambridge

    Google Scholar 

  • Johnston R (1963) Effects of gibberellins on marine algae in mixed cultures. Nature 270–275

  • Kadioglu A (1992) The effect of gibberellic acid on photosynthetic pigments and oxygen evolution in Chlamydomonas and Anacystis. Biol Plant 34:163–166

    Article  CAS  Google Scholar 

  • Kannaiyan S, Aruna SJ, Kumari SMP, Hall DO (1997) Immobilized cyanobacteria as a biofertilizer for rice crops. J Appl Phycol 9:167–174

    Article  Google Scholar 

  • Lee RD (2008) Phycology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Mansouri H, Asrar Z, Ryszard A (2011) The response of terpenoids to exogenous gibberellic acid in Cannabis sativa L. at vegetative stage. Acta Physiol Plant 33:1085–1091

    Article  CAS  Google Scholar 

  • Marsalek B, Simek M, Lukesova A (1991) The effect of phytohormones on nitrogenase activity and growth of Nostoc muscorum Agardh. In: Polsimelli M, Materassi R, Vincenzini M (eds) Nitrogen fixation. Springer, Berlin, pp 529–530

    Chapter  Google Scholar 

  • Olszewski N, Sun T, Gubler F (2002) Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell 14:S61–S80

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pan X, Chang F, Kang L, Liu Y, Li G, Li D (2008) Effects of gibberellin A3 on growth and microcystin production in Microcystis aeruginosa (Cyanophyta). J Plant Physiol 165:1691–1697

    Article  CAS  PubMed  Google Scholar 

  • Razem FA, Baron K, Hill RD (2006) Turning on gibberellin and abscisic acid signaling. Curr Opin Plant Biol 9:454–459

    Article  CAS  PubMed  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  • Sallal AKJ, Nimer NA, El Durini NM (1994) Effect of gibberellic acid on photosynthetic electron transport reactions and nitrogenase activity in Anabaena cylindrica. Microbios 78:17–25

    CAS  Google Scholar 

  • Seckbach J (2007) Algae and cyanobacteria in extreme environments. Springer, Berlin

    Book  Google Scholar 

  • Sinha RP, Häder DP (1996) Photobiology and ecophysiology of rice field cyanobacteria. Photochem Photobiol 64:887–896

    Article  CAS  Google Scholar 

  • Somogy M (1952) Notes on sugar determination. J Biol Chem 195:19–23

    Google Scholar 

  • Stewart WDP, Fitzgerald GP, Burris RH (1967) In situ studies on N2 fixation using acetylene reduction techniques. Proc Natl Acad Sci U S A 58:2071–2078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stirk WA, Bálint P, Tarkowská D, Novák O, Strnad M, Ördög V, van Staden J (2013) Hormone profiles in microalgae: gibberellins and brassinosteroids. Plant Physiol Biochem 70:348–353

    Article  CAS  PubMed  Google Scholar 

  • Tarakhovskaya ER, Maslov YI, Shishova MF (2007) Phytohormones in algae. Russ J Plant Physiol 54:163–170

    Article  CAS  Google Scholar 

  • Taylor IEP, Wilkinson AJ (1977) The occurrence of gibberellins and gibberellin-like substances in algae. Phycologia 16:37–42

    Article  CAS  Google Scholar 

  • Vaishampayan A, Sinha RP, Häder DP (1998) Use of genetically improved nitrogen-fixing cyanobacteria in rice paddy fields: prospects as a source material for engineering herbicide sensitivity and resistance in plants. Bot Acta 111:176–190

    Article  CAS  Google Scholar 

  • Watanabe A, Nishigaki S, Konishi C (1951) Effect of nitrogen-fixing blue-green algae on the growth of rice plants. Nature 168:748–749

    Article  CAS  PubMed  Google Scholar 

  • Whitton BA (2000) Soils and rice-fields. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Kluwer, Dordrecht, pp 233–255

    Google Scholar 

  • Yazaki J, Shimatani, Hashimoto A, Nagata Y, Fujii F, Kojima K, Suzuki K, Taya T, Tonouchi M, Nelson C, Nakagawa A, Otomo Y, Murakami K, Matsubara K, Kawai J, Carninci P, Hayashizaki Y, Kikuchi S (2004) Transcriptional profiling of genes responsive to abscisic acid and gibberellin in rice: phenotyping and comparative analysis between rice and Arabidopsis. Physiol Genomics 17:87–100

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakimeh Mansouri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansouri, H., Talebizadeh, B. Effect of gibberellic acid on the cyanobacterium Nostoc linckia . J Appl Phycol 28, 2187–2193 (2016). https://doi.org/10.1007/s10811-015-0756-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-015-0756-5

Keywords

Navigation