Optimization of photosynthesis, growth, and biochemical composition of the microalga Rhodomonas salina—an established diet for live feed copepods in aquaculture

Abstract

The cryptophyte Rhodomonas salina is widely used as feed for copepod cultures. However, culturing conditions to obtain high-quality algae have not yet been efficiently optimized. Therefore, we aimed to develop a cultivation protocol for R. salina to optimize its nutritional value and provide technical recommendations for later large-scale production in algal photobioreactors. We studied photosynthesis, growth, pigments, fatty acid (FA) and free amino acid (FAA) composition of R. salina cultured at different irradiances (10–300 μmol photons m−2 s−1) and nutrient availability (deficiency and excess). The optimal range of irradiance for photosynthesis and growth was 60–100 μmol photons m−2 s−1. The content of chlorophylls a and c decreased with increasing irradiance while phycoerythrin peaked at irradiances of 40–100 μmol photons m−2 s−1. The total FA content was maximal at optimal irradiances for growth, especially under nutrient deficiency. However, highly unsaturated fatty acids, desired components for copepods, were higher under nutrient excess. The total FAA content was highest at limiting irradiances (10–40 μmol photons m−2 s−1) but a better composition with a higher fraction of essential amino acids was obtained at saturated irradiances (60–140 μmol photons m−2 s−1). These results demonstrate that quality and quantity of FA and FAA of R. salina can be optimized by manipulating the irradiance and nutrient conditions. We suggest that R. salina should be cultivated in a range of irradiance 60–100 μmol photons m−2 s−1 and nutrient excess to obtain algae with high production and a balanced biochemical composition as feed for copepods.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Aldana-Aranda D, Patiño Suárez V (1998) Overview of diets used in larviculture of three caribbean conchs: queen conch Strombus gigas, milk conch Strombus costatus and fighting conch Strombus pugilis. Aquaculture 167:163–178

    Article  Google Scholar 

  2. Aragão C, Conceição LEC, Dinis MT, Fyhn H-J (2004) Amino acid pools of rotifers and Artemia under different conditions: nutritional implications for fish larvae. Aquaculture 234:429–445

    Article  Google Scholar 

  3. Arendt KE, Jónasdóttir SH, Hansen PJ, Gärtner S (2005) Effects of dietary fatty acids on the reproductive success of the calanoid copepod Temora longicornis. Mar Biol 146:513–530

  4. Bartual A, Lubián LM, Gálvez JA, Niell FX (2002) Effect of irradiance on growth, photosynthesis, pigment content and nutrient consumption in dense cultures of Rhodomonas salina (Wislouch) (Cryptophyceae). Cienc Mar 28:381–392

    CAS  Google Scholar 

  5. Bennett A, Bogorad L (1973) Complementary chromatic adaptation in a filamentous blue-green alga. J Cell Biol 2:419–435

    Article  Google Scholar 

  6. Bi R, Arndt C, Sommer U (2014) Linking elements to biochemicals: effects of nutrient supply ratios and growth rates on fatty acid composition of phytoplankton species. J Phycol 50:117–130

    CAS  Article  PubMed  Google Scholar 

  7. Bower CE, Holm-Hansen T (2011) A salicylate–hypochlorite method for determining ammonia in seawater. Can J Fish Aquat Sci 37:794–798

    Article  Google Scholar 

  8. Breteler WCMK, Schogt N, Rampen S (2005) Effect of diatom nutrient limitation on copepod development: role of essential lipids. Mar Ecol Prog Ser 291:125–133

    CAS  Article  Google Scholar 

  9. Broglio E, Jónasdóttir SH, Calbet A, Jakobsen HH, Saiz E (2003) Effect of heterotrophic versus autotrophic food on feeding and reproduction of the calanoid copepod Acartia tonsa: relationship with prey fatty acid composition. Aquat Microb Ecol 31:267–278

    Article  Google Scholar 

  10. Brown MR (1991) The amino-acid and sugar composition of 16 species of microalgae used in mariculture. J Exp Mar Biol Ecol 145:79–99

    CAS  Article  Google Scholar 

  11. Brown TE, Richardson FL (1968) The effect of growth environment on the physiology of algae: light intensity. J Phycol 4:38–54

    CAS  Article  PubMed  Google Scholar 

  12. Brown MR, Dunstan GA, Jeffrey SW, Volkman JK, Barrett SM, LeRoi J-M (1993a) The influence of irradiance on the biochemical composition of the prymnesiophyte Isochrysis sp. (Clone T-ISO). J Phycol 29:601–612

    CAS  Article  Google Scholar 

  13. Brown MR, Garland CD, Jeffrey SW, Jameson ID, Leroi JM (1993b) The gross and amino acid compositions of batch and semi-continuous cultures of Isochrysis sp. (clone T.ISO), Pavlova lutheri and Nannochloropsis oculata. J Appl Phycol 5:285–296

    CAS  Article  Google Scholar 

  14. Brown MR, Dunstan GA, Norwood SJ, Miller KA (1996) Effects of harvest stage and light on the biochemical composition of the diatom Thalassiosira pseudonana. J Phycol 32:64–73

    CAS  Article  Google Scholar 

  15. Brown MR, Jeffrey SW, Volkman JK, Dunstan GA (1997) Nutritional properties of microalgae for mariculture. Aquaculture 151:315–331

    CAS  Article  Google Scholar 

  16. Brown MR, McCausland MA, Kowalski K (1998) The nutritional value of four Australian microalgal strains fed to Pacific oyster Crassostrea gigas spat. Aquaculture 165:281–293

    Article  Google Scholar 

  17. Claybrook DL (1983) Nitrogen metabolism. In: Mantel LH (ed) The biology of Crustacea: 5. Internal anatomy and physiological regulation. The biology of Crustacea. Academic, New York, pp 162–213

    Google Scholar 

  18. Dhert P, Rombaut G, Suantika G, Sorgeloos P (2001) Advancement of rotifer culture and manipulation techniques in Europe. Aquaculture 200:129–146

    Article  Google Scholar 

  19. Diamond D (1999) Determination of nitrate in brackish or seawater by flow injection analysis. QuikChem Method 31-107-04-1-A. Millwaukee, WI 53218-1239 USA

  20. Dongre SK, Manglawat S, Singh P, Yadav M, Tiwari A (2014) Effect of environmental parameters enhancing the micro algal lipid as a sustainable energy source for biodiesel production—a review. Int J Biol Pharm Res 5:327–335

    Google Scholar 

  21. Drillet G, Jørgensen NOG, Sørensen TF, Ramløv H, Hansen BW (2006) Biochemical and technical observations supporting the use of copepods as live feed organisms in marine larviculture. Aquac Res 37:756–772

    CAS  Article  Google Scholar 

  22. Dunstan WM (1973) A comparison of the photosynthesis—light intensity relationship in phylogenetically different marine microalgae. J Exp Mar Biol Ecol 13:181–187

    CAS  Article  Google Scholar 

  23. Dunstan GA, Brown MR, Volkman JK (2005) Cryptophyceae and Rhodophyceae; chemotaxonomy, phylogeny, and application. Phytochemistry 66:2557–2570

    CAS  Article  PubMed  Google Scholar 

  24. Eriksen NT, Iversen JJL (1995) Photosynthetic pigments as nitroen stores in the cryptophyte alga Rhodomonas sp. J Mar Biotechnol 3:193–195

    CAS  Google Scholar 

  25. Evans LV (1988) The effect of spectral composition and irradiance level on pigment levels in seaweed. In: Lobban CS, Chapman DJ, Kremer P (eds) Experimental phycology: a laboratory manual. Cambridge University Press, Cambridge, p 123–133

  26. Falkowski PG (1975) Nitrate uptake by marine phytoplankton: comparison of half-saturation constants for seven species. Limnol Oceanogr 20:412–417

    CAS  Article  Google Scholar 

  27. Faust MA, Gantt E (1973) Effect of light intensity and glycerol on the growth, pigment composition, and ultrastructure of Chroomonas sp. J Phycol 9:489–495

    CAS  Google Scholar 

  28. Folch J, Lees M, Stanley GHS (1957) A simple method for isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  29. Fraser AJ, Sargent JR, Gamble JC (1989) Lipid class and fatty acid composition of Calanus finmarchicus (Gunnerus), Pseudocalanus sp. and Temora longicornis Muller from a nutrient-enriched seawater enclosure. J Exp Mar Biol Ecol 130:81–92

  30. Halldal P (1958) Pigment formation and growth in blue-green algae in crossed gradients of light intensity and temperature. Physiol Plant 11:401–420

    CAS  Article  Google Scholar 

  31. Hammer A, Schumann R, Schubert H (2002) Light and temperature acclimation of Rhodomonas salina (Cryptophyceae): photosynthetic performance. Aquat Microb Ecol 29:287–296

    Article  Google Scholar 

  32. Hansen PJ (1989) The red tide dinoflagellate Alexandrium tamarense: effects on behaviour and growth of a tintinnid ciliate. Mar Ecol Prog Ser 53:105–116

    Article  Google Scholar 

  33. Harrison PJ, Thompson PA, Calderwood GS (1990) Effects of nutrient and light limitation on the biochemical composition of phytoplankton. J Appl Phycol 2:45–56

    Article  Google Scholar 

  34. Harwood J (1998) Involvement of chloroplast lipids in the reaction of plants submitted to stress. In: Paul-André S, Norio M (eds) Lipids in photosynthesis: structure, function and genetics, vol 6, Advances in photosynthesis and respiration. Springer, Netherlands, pp 287–302

    Google Scholar 

  35. Hu Q (2004) Environmental effects on cell composition. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science, Oxford, pp 83–93

    Google Scholar 

  36. Huntley M, Sykes P, Rohan S, Marin V (1986) Chemically-mediated rejection of dinoflagellate prey by the copepods Calanus pacificus and Paracalanus parvus: mechanism, occurrence and significance. Mar Ecol Prog Ser 28:105–120

    Article  Google Scholar 

  37. Jassby AD, Platt T (1976) Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol Oceanogr 21:540–547

    CAS  Article  Google Scholar 

  38. Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a 1 , b 1 , c 1 and c 2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanz 167:191–194

  39. Jónasdóttir SH (1994) Effects of food quality on the reproductive success of Acartia tonsa and Acartia hudsonica: laboratory observations. Mar Biol 121:67–81

    Article  Google Scholar 

  40. Jónasdóttir SH, Kiørboe T (1996) Copepod recruitment and food composition: do diatoms affect hatching success? Mar Biol 125:743–750

    Article  Google Scholar 

  41. Juneja A, Ceballos RM, Murthy GS (2013) Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies 6:4607–4638

    Article  Google Scholar 

  42. Khaleafa AF, Mohsen AF, Shaalan SH (1982) Effect of different light intensities on growth, amino-acid, fat and sugar concentrations in Caulerpa prolifera (Foerskal) Lamouroux. Hydrobiol Bull 16:207–212

    CAS  Article  Google Scholar 

  43. Kromkamp JC, Peen J (2001) Oxygen comsumption in the light by unicellular algae. In: PS2001 Proceedings 12th International Congress on Photosynthesis. CSIRO Publishing, Brisbane, Australia, pp 1–6

  44. Lafarga-De la Cruz F, Valenzuela-Espinoza E, Millán-Núñez R, Trees CC, Santamaría-del-Ángel E, Núñez-Cebrero F (2006) Nutrient uptake, chlorophyll a and carbon fixation by Rhodomonas sp. (Cryptophyceae) cultured at different irradiance and nutrient concentrations. Aquac Eng 35:51–60

    Article  Google Scholar 

  45. Lewitus AJ, Caron DA (1990) Relative effects of nitrogen or phosphorus depletion and light intensity on the pigmentation, chemical composition, and volume of Pyrenomonas salina (Cryptophyceae). Mar Ecol Prog Ser 61:171–181

    CAS  Article  Google Scholar 

  46. Lichtlé C (1979) Effects of nitrogen deficiency and light of high intensity on Cryptomonas rufescens (Cryptophyceae). Protoplasma 101:283–299

    Article  Google Scholar 

  47. Malzahn AM, Boersma M (2012) Effects of poor food quality on copepod growth are dose dependent and non-reversible. Oikos 121:1408–1416

    Article  Google Scholar 

  48. Mansour M, Frampton DF, Nichols P, Volkman J, Blackburn S (2005) Lipid and fatty acid yield of nine stationary-phase microalgae: applications and unusual C24–C28 polyunsaturated fatty acids. J Appl Phycol 17:287–300

    CAS  Article  Google Scholar 

  49. Marinho da Costa RR, Fernández F (2002) Feeding and survival rates of the copepods Euterpina acutifrons Dana and Acartia grani Sars on the dinoflagellates Alexandrium minutum Balech and Gyrodinium corsicum Paulmier and the Chryptophyta Rhodomonas baltica Karsten. J Exp Mar Biol Ecol 273:131–142

    Article  Google Scholar 

  50. Mortillaro JM, Pitt KA, Lee SY, Meziane T (2009) Light intensity influences the production and translocation of fatty acids by zooxanthellae in the jellyfish Cassiopea sp. J Exp Mar Biol Ecol 378:22–30

    CAS  Article  Google Scholar 

  51. Muller-Feuga A, Moal J, Kaas R (2003) The microalgae of aquaculture. In: Støttrup JG, McEvoy LA (eds) Live feeds in marine aquaculture. Blackwell Publising, Oxford, pp 206–299

    Google Scholar 

  52. Neidhardt J, Benemann J, Zhang L, Melis A (1998) Photosystem-II repair and chloroplast recovery from irradiance stress: relationship between chronic photoinhibition, light-harvesting chlorophyll antenna size and photosynthetic productivity in Dunaliella salina (green algae). Photosynth Res 56:175–184

    CAS  Article  Google Scholar 

  53. Payne MF, Rippingale RJ (2000) Evaluation of diets for culture of the calanoid copepod Gladioferens imparipes. Aquaculture 187:85–96

    Article  Google Scholar 

  54. Pereira DC, Trigueiro TG, Colepicolo P, Marinho-Soriano E (2012) Seasonal changes in the pigment composition of natural population of Gracilaria domingensis (Gracilariales, Rhodophyta). Rev Bras Farm 22:874–880

    CAS  Article  Google Scholar 

  55. Piorreck M, Baasch K-H, Pohl P (1984) Biomass production, total protein, chlorophylls, lipids and fatty acids of freshwater green and blue-green algae under different nitrogen regimes. Phytochemistry 23:207–216

    CAS  Article  Google Scholar 

  56. Platt T, Gallegos C, Harrison W (1980) Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J Mar Res 38:687–701

    Google Scholar 

  57. Rasdi NW, Qin JG (2014) Improvement of copepod nutritional quality as live food for aquaculture: a review. Aquac Res. doi:10.1111/are.12471

    Google Scholar 

  58. Rasdi NW, Qin JG, Li Y (2015) Effects of dietary microalgae on fatty acids and digestive enzymes in copepod Cyclopina kasignete, a potential live food for fish larvae. Aquac Res. doi:10.1111/are.12778

    Google Scholar 

  59. Reitan KI, Rainuzzo JR, Olsen Y (1994) Effect of nutrient limitation on fatty acid and lipid content of marine microalgae. J Phycol 30:972–979

    CAS  Article  Google Scholar 

  60. Renaud SM, Parry DL, Thinh L-V, Kuo C, Padovan A, Sammy N (1991) Effect of light intensity on the proximate biochemical and fatty acid composition of Isochrysis sp. and Nannochloropsis oculata for use in tropical aquaculture. J Appl Phycol 3:43–53

    CAS  Article  Google Scholar 

  61. Rhiel E, Mörschel E, Wehrmeyer W (1985) Correlation of pigment deprivation and ultrastructural organization of thylakoid membranes in Cryptomonas maculata following nutrient deficiency. Protoplasma 129:62–73

    CAS  Article  Google Scholar 

  62. Ritchie R (2006) Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth Res 89:27–41

    CAS  Article  PubMed  Google Scholar 

  63. Rückert GV, Giani A (2004) Effect of nitrate and ammonium on the growth and protein concentration of Microcystis viridis Lemmermann (Cyanobacteria). Rev Bras Bot 27:325–331

    Article  Google Scholar 

  64. Sharma KK, Schuhmann H, Schenk PM (2012) High lipid induction in microalgae for biodiesel production. Energies 5:1532–1553

  65. Shifrin NS, Chisholm SW (1981) Phytoplankton lipids: interspecific differences and effects of nitrate, silicate and light-dark cycles. J Phycol 17:374–384

    CAS  Article  Google Scholar 

  66. Smith REH, Kalff J (1982) Size-dependent phosphorus uptake kinetics and cell quota in phytoplankton. J Phycol 18:275–284

    CAS  Article  Google Scholar 

  67. Søndergaard M, Riemann B (1979) Ferskvandsbiologiske analysemetoder. Akademisk Forlag, Copenhagen

    Google Scholar 

  68. Sorgeloos P, Dhert P, Candreva P (2001) Use of brine shrimp, Artemia spp., in larval crustacean nutrition: a review. Aquaculture 200:147–159

    Article  Google Scholar 

  69. Spector A (1999) Essentiality of fatty acids. Lipids 34:S1–S3

    CAS  Article  PubMed  Google Scholar 

  70. Sriharan S, Bagga D, Nawaz M (1991) The effects of nutrients and temperature on biomass, growth, lipid production, and fatty acid composition of Cyclotella cryptica Reimann, Lewin, and Guillard. Appl Biochem Biotechnol 28–29:317–326

    Article  Google Scholar 

  71. Støttrup JG (2003) Production and nutrional value of copepods. In: Støttrup JG, McEvoy LA (eds) Live feeds in marine aquaculture. Blackwell Publishing, Oxford, pp 145–205

    Google Scholar 

  72. Støttrup JG, Jensen J (1990) Influence of algal diet on feeding and egg-production of the calanoid copepod Acartia tonsa Dana. J Exp Mar Biol Ecol 141:87–105

    Article  Google Scholar 

  73. Thompson PA, Harrison PJ, Whyte JNC (1990) Influence of irradiance on the fatty acid composition of phytoplankton. J Phycol 26:278–288

    CAS  Article  Google Scholar 

  74. Wilson RP (1985) Amino acid and protein requirements of fish. In: Cowey CB, Mackie AM, Bell JG (eds) Nutrition and feeding in fish. Academic, London, pp 1–16

    Google Scholar 

  75. Wu G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37:1–17

    Article  PubMed  Google Scholar 

  76. Yaakob Z, Ali E, Zainal A, Mohamad M, Takriff MS (2014) An overview: biomolecules from microalgae for animal feed and aquaculture. J Biol Res (Thessaloniki) 21:6

    Article  Google Scholar 

  77. Yu J, Li G, Krull I, Cohen S (1994) Polymeric 6-aminoquinone, an activated carbamate reagent for derivatization of amines and amino acids by high performance liquid chromatography. J Chromatogr B 658:249–260

    CAS  Article  Google Scholar 

  78. Zhang J, Wu C, Pellegrini D, Romano G, Esposito F, Ianora A, Buttino I (2013) Effects of different monoalgal diets on egg production, hatching success and apoptosis induction in a Mediterranean population of the calanoid copepod Acartia tonsa (Dana). Aquaculture 400–401:65–72

    Article  Google Scholar 

  79. Zimba PV (2012) An improved phycobilin extraction method. Harmful Algae 17:35–39

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the Danish National Strategic Research Council IMPAQ-IMProvement of AQuaculture high quality fish fry production grant (Grant. no. 10-093522) to Benni Winding Hansen and the Danish National Advanced Technology Foundation COMA-COpepod egg Mass production in Aquaculture grant (Grant. no. 67-2013-1) to Benni Winding Hansen and Søren Laurentius Nielsen. We would like to thank Anne B. Faarborg and Rikke Guttesen (Roskilde University, Denmark) for laboratory assistance and Niels O. G. Jørgensen (University of Copenhagen, Denmark) for amino acid analyses.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Minh Thi Thuy Vu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 20 kb)

ESM 2

(DOCX 22 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vu, M.T.T., Douëtte, C., Rayner, T.A. et al. Optimization of photosynthesis, growth, and biochemical composition of the microalga Rhodomonas salina—an established diet for live feed copepods in aquaculture. J Appl Phycol 28, 1485–1500 (2016). https://doi.org/10.1007/s10811-015-0722-2

Download citation

Keywords

  • Algal production
  • Amino acids
  • Designer feed
  • Fatty acids
  • Phycoerythrin