Microalgal industry in China: challenges and prospects

Abstract

Over the past 15 years, China has become the major producer of microalgal biomass in the world. Spirulina (Arthrospira) is the largest microalgal product by tonnage and value, followed by Chlorella, Dunaliella, and Haematococcus, the four main microalgae grown commercially. China’s production is estimated at about two-thirds of global microalgae biomass of which roughly 90 % is sold for human consumption as human nutritional products (‘nutraceuticals’), with smaller markets in animal feeds mainly for marine aquaculture. Research is also ongoing in China, as in the rest of the world, for other high-value as well as commodity microalgal products, from pharmaceuticals to biofuels and CO2 capture and utilization. This paper briefly reviews the main challenges and potential solutions for expanding commercial microalgae production in China and the markets for microalgae products. The Chinese Microalgae Industry Alliance (CMIA), a network founded by Chinese microalgae researchers and commercial enterprises, supports this industry by promoting improved safety and quality standards, and advancement of technologies that can innovate and increase the markets for microalgal products. Microalgae are a growing source of human nutritional products and could become a future source of sustainable commodities, from foods and feeds, to, possibly, fuels and fertilizers.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Ali SK, Saleh AM (2012) Spirulina—an overview. Int J Pharm Sci 4:9–15

    CAS  Google Scholar 

  2. Bao YL, Liu M, Wu X, Cong W, Ning ZX (2012) In situ carbon supplementation in large scale cultivations of Spirulina platensis in open raceway pond. Biotechnol Bioprocess Eng 17:93–99

    CAS  Article  Google Scholar 

  3. Belay A (2013) Biology and industrial production of Arthrospira (Spirulina). In: Richmondand A, Hu Q (eds) Handbook of microalgae culture, 2nd edn. Wiley, New York, pp 339–358

    Google Scholar 

  4. Belay A, Ota Y, Miyakawa K, Shimamatsu H (1993) Current knowledge on potential health benefits of Spirulina. J Appl Phycol 5:235–241

    Article  Google Scholar 

  5. Ben Amotz A, Lers A, Avron M (1988) Stereoisomers of beta-carotene and phytoene in the alga Dunaliella bardawil. Plant Physiol 86:1286–1291

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Benemann JR (1992) Microalgae aquaculture feeds. J Appl Phycol 4:233–245

    Article  Google Scholar 

  7. Borowitzka MA (1997) Microalgae for aquaculture: opportunities and constraints. J Appl Phycol 9:393–401

    Article  Google Scholar 

  8. Borowitzka MA (2013a) High-value products from microalgae-their development and commercialisation. J Appl Phycol 25:743–756

    CAS  Article  Google Scholar 

  9. Borowitzka MA (2013b) Dunaliella: Biology, production, and markets. In: Richmond A, Hu Q (eds) Handbook of microalgal culture. John Wiley & Sons, Ltd, pp 359–368

  10. Borowitzka LJ, Borowitzka MA (1990) Commercial production of β-carotene by Dunaliella salina in open ponds. Bull Mar Sci 47:244–252

    Google Scholar 

  11. Boussiba S (2000) Carotenogenesis in the green alga Haematococcus pluvialis: cellular physiology and stress response. Physiol Plant 108:111–117

    CAS  Article  Google Scholar 

  12. Burr GS, Wolters WR, Barrows FT, Hardy RW (2012) Replacing fishmeal with blends of alternative proteins on growth performance of rainbow trout (Oncorhynchus mykiss), and early or late stage juvenile Atlantic salmon (Salmo salar). Aquaculture 334:110–116

    Article  Google Scholar 

  13. Chen JW, Li BZ (2014) China’s food safety standard system: problems and solutions. Food Sci 35(9):334–338 (in Chinese)

    Google Scholar 

  14. Glazer AN (1994) Phycobiliproteins—a family of valuable, widely used fluorophores. J Appl Phycol 6:105–112

    CAS  Article  Google Scholar 

  15. Han FF, Wang WL, Li YG, Shen GM, Wan MX, Wang J (2013) Changes of biomass, lipid content and fatty acids composition under a light-dark cyclic culture of Chlorella pyrenoidosa in response to different temperature. Bioresour Technol 132:182–189

    CAS  Article  PubMed  Google Scholar 

  16. Han W, Li CY, Miao XL, Yu GX (2012) A novel miniature culture system to screen CO2-sequestering microalgae. Energies 5:4372–4389

    CAS  Article  Google Scholar 

  17. Hemaiswarya S, Raja R, Kumar RR, Ganesan V, Anbazhagan C (2011) Microalgae: a sustainable feed source for aquaculture. World J Microbiol Biotechnol 27:1737–1746

    Article  Google Scholar 

  18. Holman BWB, Malau-Aduli AEO (2013) Spirulina as a livestock supplement and animal feed. J Anim Physiol Anim Nutr 97:615–623

    CAS  Article  Google Scholar 

  19. Hu HJ (2003) Biological and biotechnological principles on Spirulina. Science Press, Beijing, pp 9–12

    Google Scholar 

  20. Hu L, Huang B, Zuo MM, Guo RY, Wei H (2008) Preparation of the phycoerythrin subunit liposome in a photodynamic experiment on liver cancer cells. Acta Pharmacol Sin 29:1539–1546

    CAS  Article  PubMed  Google Scholar 

  21. Ip PF, Chen F (2005) Production of astaxanthin by the green microalga Chlorella zofingiensis in the dark. Process Biochem 40:733–738

    CAS  Article  Google Scholar 

  22. Jiang Y, Chen F, Liang SZ (1999) Production potential of docosahexaenoic acid by the heterotrophic marine dinoflagellate Crypthecodinium cohnii. Process Biochem 34:633–637

    CAS  Article  Google Scholar 

  23. Jiang Y, Zhang W, Wang J, Chen Y, Shen S, Liu T (2013) Utilization of simulated flue gas for cultivation of Scenedesmus dimorphus. Bioresour Technol 128:359–364

    CAS  Article  PubMed  Google Scholar 

  24. Li DM, Qi YZ (1997) Spirulina industry in China: present states and future prospects. J Appl Phycol 9:25–28

    CAS  Article  Google Scholar 

  25. Li SW, Luo SJ, Guo RB (2013) Efficiency of CO2 fixation by microalgae in a closed raceway pond. Bioresour Technol 136:267–272

    CAS  Article  PubMed  Google Scholar 

  26. Li YG, Xu L, Huang YM, Wang F, Guo C, Liu CZ (2011) Microalgal biodiesel in China: opportunities and challenges. Appl Energy 88:3432–3437

    CAS  Article  Google Scholar 

  27. Liang SZ, Liu XM, Chen F, Chen ZJ (2004) Current microalgal health food R&D activities in China. Hydrobiologia 512:45–48

    Article  Google Scholar 

  28. Liu TZ, Wang JF, Hu Q, Cheng PF, Ji B, Liu JL, Chen Y, Zhang W, Chen XL, Chen L, Gao LL, Ji CL, Wang H (2013) Attached cultivation technology of microalgae for efficient biomass feedstock production. Bioresour Technol 127:216–222

    CAS  Article  PubMed  Google Scholar 

  29. Liu W, Liu JG, Lin W, Wang Z, Li YY, Shi PJ, Xue YB, Cui XJ (2006) Technological assembly and its application in a pilot scale culture of Haematococcus pluvialis. Feed Ind 12:12–17 (in Chinese)

    CAS  Google Scholar 

  30. Lorenz RT, Cysewski GR (2000) Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol 18:160–167

    CAS  Article  PubMed  Google Scholar 

  31. Lu YM, Xiang WZ, Wen YH (2011) Spirulina (Arthrospira) industry in Inner Mongolia of China: current status and prospects. J Appl Phycol 23:265–269

    Article  PubMed  PubMed Central  Google Scholar 

  32. Markou G, Nerantzis E (2013) Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions. Biotechnol Adv 31:1532–1542

    CAS  Article  PubMed  Google Scholar 

  33. Priyadarshani I, Rath B (2012) Commercial and industrial applications of microalgae—a review. J Algal Biomass Utln 3:89–100

    Google Scholar 

  34. Ribeiro BD, Barreto DW, Coelho MAZ (2011) Technological aspects of beta-carotene production. Food Bioprocess Tech 4:693–701

    CAS  Article  Google Scholar 

  35. Santiago-Santos MC, Ponce-Noyola T, Olvera-Ramirez R, Ortega-Lopez J, Canizares-Villanueva RO (2004) Extraction and purification of phycocyanin from Calothrix sp. Process Biochem 39:2047–2052

    CAS  Article  Google Scholar 

  36. Schlipalius L (1991) The extensive commercial cultivation of Dunaliella salina. Bioresour Technol 38:241–243

    CAS  Article  Google Scholar 

  37. Sekar S, Chandramohan M (2008) Phycobiliproteins as a commodity: trends in applied research, patents and commercialization. J Appl Phycol 20:113–136

    Article  Google Scholar 

  38. Shao M, Zhang H, Yang J, Zhang Y, Liu Z, Qin S (2013a) Optimization of the ultrasonic wave extraction technology of the phycocyanin from Spirulina (Arthrospia) using response surface analysis. J Biol 4:93–96 (in Chinese)

  39. Shao M, Zhao N, Li Y, Gu Y, Liu Z, Qin S (2013b) A single step chromatography for the purification of phycocyanin from Arthrospira platensis. J Biol 5:59–63 (in Chinese)

    Google Scholar 

  40. Shi XM, Liu HJ, Zhang XW, Chen F (1999) Production of biomass and lutein by Chlorella protothecoides at various glucose concentrations in heterotrophic cultures. Process Biochem 34:341–347

    CAS  Article  Google Scholar 

  41. Su ZF, Kang RJ, Shi SY, Cong W, Cai ZL (2008) An economical device for carbon supplement in large-scale microalgae production. Bioprocess Biosyst Eng 31:641–645

    CAS  Article  PubMed  Google Scholar 

  42. Tang G, Suter P (2011) Vitamin A, nutrition, and health values of algae: Spirulina, Chlorella, and Dunaliella. J Pharm Nutr 1:111–118

    CAS  Google Scholar 

  43. Tang Z, Zhou Y, Zhou H, Jiao X, Ju B, Qin S (2012) Preparation of antioxidant peptides from phycocyanin by enzymatic hydrolysis. Food Sci Technol 11:241–244 (in Chinese)

    Google Scholar 

  44. Wang Y, Peng J (2008) Growth-associated biosynthesis of astaxanthin in heterotrophic Chlorella zofingiensis (Chlorophyta). World J Microb Biotechnol 24:1915–1922

    CAS  Article  Google Scholar 

  45. Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 329:796–799

    CAS  Article  PubMed  Google Scholar 

  46. Wynn J, Behrens P, Sundararajahn A, Hansen J, Apt K (2005) Production of single cell oils from dinoflagellates. In: Cohen Z, Rutledge C (eds) Single cell oils. AOCS Press, Urbana, pp 115–129

    Google Scholar 

  47. Yan MY, Liu B, Jiao XD, Qin S (2014) Preparation of phycocyanin microcapsules and its properties. Food Bioprod Process 92:89–97

    CAS  Article  Google Scholar 

  48. Yin WQ, Liu YF, Li BQ, Xin NH (2013) The status and prospects of comprehensive utilization of algae Dunaliella salina in China. J Salt Chem Ind 12:1–3 (in Chinese)

    Google Scholar 

  49. Yu JZ, Liang XX, Chen F, Wei D (2013) Evaluation of the preservation methods for two microalgal concentrates. Modern Food Sci Technol 5:948–952 (in Chinese)

    Google Scholar 

  50. Zhang XC, Xue MX (2012) Spirulina industry in China current statues and prospects. Biotechnology & Business 2(3):48–54 (in Chinese)

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (408760862) and Public Science and Technology Research Funds Projects of the Ocean (201205027). We also wish to thank Inner Mongolia Rejuv Biotech Co. Ltd and Yantai Hearol Biology Technology Co. Ltd for permitting us to use the pictures in Figs. 2 and 4. We are grateful to King Dnarmsa Spirulina Co. Ltd for supplying us the pictures Fig. 3 and Prof. Jianguo Liu (Institute of Oceanology, Chinese Academy of Sciences, Qingdao) for supplying us Fig. 5.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Song Qin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Wang, Y., Benemann, J.R. et al. Microalgal industry in China: challenges and prospects. J Appl Phycol 28, 715–725 (2016). https://doi.org/10.1007/s10811-015-0720-4

Download citation

Keywords

  • Microalgae
  • Spirulina
  • Chlorella
  • Dunaliella
  • Haematococcus
  • Nutritional products
  • Microalgae mass culture