Skip to main content

Advertisement

Log in

Growth, protein and carbohydrate contents in Ulva rigida and Gracilaria bursa-pastoris integrated with an offshore fish farm

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Low-technology practices are generally the rule when cultivating marine macroalgae, and they do not necessarily comply with sustainability requirements. When integrated with other marine organisms in land-based setups, seaweed culture can be sustainable also providing environmental benefits. Major challenges of such integrated aquaculture systems, however, are in sea-based setups. The current study examined the growth rates of Ulva rigida and Gracilaria bursa-pastoris, as well as their protein and carbohydrate contents, when exposed to different distances from an offshore, fed-fish cage system. Nutrient levels in seawater were consistently high downstream from the fish cages, significantly enhancing the specific growth rates and cellular contents of starch and soluble protein in these two seaweeds. Specifically, daily maximal growth rates were 17 % day−1 for U. rigida and 10 % day−1 for G. bursa-pastoris, maximal starch contents were 22 and 21 %, respectively, and maximal protein contents were on a dry weight basis 7 and 13 %, respectively. When repositioned at low ambient nutrient levels for 48 h, the starch and the carbohydrate levels increased by 129 and 131 % for U. rigida and by 198 and 150 % for G. bursa-pastoris, respectively. Altogether, this study supports implementing future viable mean of sustainable macroalgae cultivation by taking advantage of excessive nutrients released from an offshore fish farm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Aguiar A, Morgan J, Teichberg M, Fox S, Valiela I (2003) Transplantation and isotopic evidence of the relative effects of ambient and internal nutrient supply on the growth of Ulva lactuca. Biol Bull 205:250–251

    Article  CAS  PubMed  Google Scholar 

  • Alhammoud B, Béranger K, Mortier L, Crépon M, Dekeyser I (2005) Surface circulation of the Levantine Basin: comparison of model results with observations. Prog Oceanogr 66:299–320

    Article  Google Scholar 

  • Anderson R, Monteiro P, Levitt G (1996) The effect of localised eutrophication on competition between Ulva lactuca (Ulvaceae, Chlorophyta) and a commercial resource of Gracilaria verrucosa (Gracilariaceae, Rhodophyta). Hydrobiologia 326/327:291–296

  • Arasaki S, Arasaki T (1983) Vegetables from the sea. Japan Publ Inc, Tokyo 96:251–223

    Google Scholar 

  • Barrington K, Chopin T, Robinson S (2009) Integrated multi-trophic aquaculture (IMTA) in marine temperate waters. In: Soto D (ed) Integrated mariculture: a global review. FAO Fisheries and Aquaculture Technical Paper, vol 529, No. FAO, Rome, pp 7–46

    Google Scholar 

  • Barsanti L, Gualtieri P (2006) Algae: anatomy, biochemistry, and biotechnology. CRC Press, Boca Raton

    Google Scholar 

  • Beardall J (1989) Photosynthesis and photorespiration in marine phytoplankton. Aquat Bot 34:105–130

    Article  CAS  Google Scholar 

  • Bethke PC, Busse JC (2008) Validation of a simple, colorimetric, microplate assay using amplex red for the determination of glucose and sucrose in potato tubers and other vegetables. Am J Potato Res 85:414–421

    Article  CAS  Google Scholar 

  • Bird KT, Habig C, DeBusk T (1982) Nitrogen allocation and storage patterns in Gracilaria tikvahiae (Rhodophyta). J Phycol 18:344–348

    Article  CAS  Google Scholar 

  • Björnsäter BR, Wheeler PA (1990) Effect of nitrogen and phosphorus supply on growth and tissue composition of Ulva fenestrata and Enteromorpha intestinalis (Ulvales, Chlorophyta). J Phycol 26:603–611

    Article  Google Scholar 

  • Bruhn A, Dahl J, Nielsen HB, Nikolaisen L, Rasmussen MB, Markager S, Olesen B, Arias C, Jensen PD (2011) Bioenergy potential of Ulva lactuca: biomass yield, methane production and combustion. Bioresour Technol 102:2595–2604

    Article  CAS  PubMed  Google Scholar 

  • Chopin T, Buschmann AH, Halling C, Troell M, Kautsky N, Neori A, Kraemer GP, Zertuche-González JA, Yarish C, Neefus C (2001) Integrating seaweeds into marine aquaculture systems: a key toward sustainability. J Phycol 37:975–986

    Article  Google Scholar 

  • Copertino MDS, Tormena T, Seeliger U (2008) Biofiltering efficiency, uptake and assimilation rates of Ulva clathrata (Roth) J. Agardh (Chlorophyceae) cultivated in shrimp aquaculture waste water. J Appl Phycol 21:31–45

    Article  Google Scholar 

  • DeBoer J, Guigli H (1978) Nutritional studies of two red algae. 1. Growth rate as a function of nitogen source and concentration. J Phycol 266:261–266

    Article  Google Scholar 

  • DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • FAO (2012) World fisheries and aquacuture. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Fleurence J (1999) Seaweed proteins: biochemical, nutritional aspects and potential uses. Trends Food Sci Technol 10:26–29

    Article  Google Scholar 

  • Friedlander M, Ben-Amotz A (1991) The effect of outdoor culture conditions on growth and epiphytes of Gracilaria conferta. Aquat Bot 39:315–333

    Article  Google Scholar 

  • Ge L, Wang P, Mou H (2011) Study on saccharification techniques of seaweed wastes for the transformation of ethanol. Renew Energy 36:84–89

    Article  CAS  Google Scholar 

  • Habig C, DeBusk TA, Ryther JH (1984) The effect of nitrogen content on methane production by the marine algae Gracilaria tikvahiae and Ulva sp. Biomass 4:239–251

    Article  CAS  Google Scholar 

  • Hemmingson JA, Furneaux RH, Murray-Brown VH (1996) Biosynthesis of agar polysaccharides in Gracilaria chilensis Bird, McLachlan et Oliveira. Carbohydr Res 287:101–115

    Article  CAS  Google Scholar 

  • Israel A, Gavrieli J, Glazer A, Friedlander M (2005) Utilization of flue gas from a power plant for tank cultivation of the red seaweed Gracilaria cornea. Aquaculture 249:311–316

    Article  CAS  Google Scholar 

  • Juan JV, Bird KT, Niell FX (1995) Nitrogen assimilation following NH4 + pulses in the red alga Gracilariopsis lemaneiformis: effect on C metabolism. Mar Ecol Prog Ser 122:253–263

    Article  Google Scholar 

  • Kim NJ, Li H, Jung K, Chang HN, Lee PC (2011) Ethanol production from marine algal hydrolysates using Escherichia coli KO11. Bioresour Technol 102:7466–7469

    Article  CAS  PubMed  Google Scholar 

  • Korzen L, Peled Y, Zemah Shamir S, Shechter M, Gedanken A, Abelson A, Israel A (2015) An economic analysis of bioethanol production from the marine macroalga Ulva (Chlorophyta). Technology. doi:10.1142/S2339547815400105

    Google Scholar 

  • Kraan S (2013) Mass-cultivation of carbohydrate rich macroalgae, a possible solution for sustainable biofuel production. Mitig Adapt Strat Global Change 18:27–46

    Article  Google Scholar 

  • Krom MD, Herut B, Mantoura RFC (2004) Nutrient budget for the Eastern Mediterranean: implications for phosphorus limitation. Limnol Oceanogr 49:1582–1592

    Article  CAS  Google Scholar 

  • Kruger NJ (1994) The Bradford method for protein quantitation. Methods Mol Biol 32:9–15

    CAS  PubMed  Google Scholar 

  • Lahaye M (1995) Natural decoloration, composition and increase in dietary fibre content of an edible marine algae, Ulva rigida (Chlorophyta), grown under different nitrogen conditions. J Sci Food Agric 68:99–104

    Article  CAS  Google Scholar 

  • Lahaye M, Jegou D (1993) Chemical and physical-chemical characteristics of dietary fibres from Ulva lactuca (L.) Thuret and Enteromorpha compressa (L.) Grev. J Appl Phycol 5:195–200

    Article  Google Scholar 

  • Lahaye M, Robic A (2007) Structure and functional properties of ulvan, a polysaccharide from green seaweeds. Biomacromolecules 8:1765–1774

    Article  CAS  PubMed  Google Scholar 

  • Levy I, Friedlander M (1994) Seasonal growth activity of local and foreign gracilarioid strains in Israel. J Appl Phycol 6:447–454

    Article  Google Scholar 

  • Lobban CS (1994) Seaweed ecology and physiology. Cambridge University Press, Cambridge

  • Mann KH (1973) Seaweeds: their productivity and strategy for growth. Science 182:975–981

    Article  CAS  PubMed  Google Scholar 

  • Marinho-Soriano E, Fonseca PC, Carneiro MAA, Moreira WSC (2006) Seasonal variation in the chemical composition of two tropical seaweeds. Bioresour Technol 97:2402–2406

    Article  CAS  PubMed  Google Scholar 

  • Masuko T, Minami A, Iwasaki N (2005) Carbohydrate analysis by a phenol-sulfuric acid method in microplate format. Anal Biochem 339:69–72

    Article  CAS  PubMed  Google Scholar 

  • McDermid KJ, Stuercke B (2003) Nutritional composition of edible Hawaiian seaweeds. J Appl Phycol 15:513–524

    Article  CAS  Google Scholar 

  • McGlathery K, Pedersen M (1999) The effect of growth irradiance on the coupling of carbon and nitrogen metabolism in Chaetomorpha linum (Chlorophyta). J Phycol 731:721–731

    Article  Google Scholar 

  • Msuya FE, Neori A (2010) The performance of spray-irrigated Ulva lactuca (Ulvophyceae, Chlorophyta) as a crop and as a biofilter of fishpond effluents. J Phycol 46:813–817

    Article  CAS  Google Scholar 

  • Neori A, Cohen I, Gordin H (1991) Ulva lactuca biofilters for marine fishpond effluents. II. Growth rate, yield and C: N ratio. Bot Mar 34:483–490

    Article  Google Scholar 

  • Neori A, L C Ragg N, Shpigel M (1998) The integrated culture of seaweed, abalone, fish and clams in modular intensive land-based systems: II. Performance and nitrogen partitioning within an abalone (Haliotis tuberculata) and macroalgae culture system. Aquac Eng 17:215–239

    Article  Google Scholar 

  • Neori A, Shpigel M, Ben-Ezra D (2000) A sustainable integrated system for culture of fish, seaweed and abalone. Aquaculture 186:279–291

    Article  Google Scholar 

  • Neori A, Msuya FE, Shauli L, Schuenhoff A, Kopel F, Shpigel M (2003) A novel three-stage seaweed (Ulva lactuca) biofilter design for integrated mariculture. J Appl Phycol 15:543–553

    Article  CAS  Google Scholar 

  • Neori A, Chopin T, Troell M, Buschmann AH, Kraemer GP, Halling C, Shpigel M, Yarish C (2004) Integrated aquaculture: rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture. Aquaculture 231:361–391

    Article  Google Scholar 

  • Nielsen MM, Bruhn A, Rasmussen MB, Olesen B, Larsen MM, Møller HB (2011) Cultivation of Ulva lactuca with manure for simultaneous bioremediation and biomass production. J Appl Phycol 24:449–458

    Article  Google Scholar 

  • Pickering T, Gordon M, Tong L (1993) Effect of nutrient pulse concentration and frequency on growth of Gracilaria chilensis plants and levels of epiphytic algae. J Appl Phycol 5:525–533

    Article  Google Scholar 

  • Pinchetti JLG, del Campo FE, Díez PM, Garcia Reina G (1998) Nitrogen availability influences the biochemical composition and photosynthesis of tank-cultivated Ulva rigida (Chlorophyta). J Appl Phycol 10:383–389

    Article  CAS  Google Scholar 

  • Reznik A, Israel A (2012) Fuel from seaweeds: rationale and feasibility. In: Gordon R, Seckbach J (eds) The science of algal fuels: phycology, geology, biophotonics, genomics and nanotechnology. Springer, Dordrecht, pp 341–354

  • Rosenberg GJR (1982) Ecological growth strategies in the seaweeds Gracilaria foliifera (Rhodophyceae) and Ulva sp. (Chlorophyceae): soluble nitrogen and reserve carbohydrates. Mar Biol 259:251–259

    Article  Google Scholar 

  • Rotem A, Roth-Bejerano N, Arad SM (1986) Effects of controlled environmental conditions on starch and agar contents of Gracilaria sp. (Rhodophyceae). J Phycol 22:117–121

    Article  CAS  Google Scholar 

  • Smit AJ, Robertson BL, du Preez DR (1996) Influence of ammonium-N pulse concentrations and frequency, tank condition and nitrogen starvation on growth rate and biochemical composition of Gracilaria gracilis. J Appl Phycol 8:473–481

    Article  CAS  Google Scholar 

  • Smith AM, Zeeman SC (2006) Quantification of starch in plant tissues. Nat Protoc 1:1342–1345

    Article  CAS  PubMed  Google Scholar 

  • Svirski E, Beer S, Friedlander M (1993) Gracilaria conferta and its epiphytes. II: Interrelationship between the red seaweed and Ulva lactuca. Hydrobiologia 260/261:391–396

  • Troell M, Halling C, Neori A, Chopin T, Buschmann AH, Kautsky N, Yarish C (2003) Integrated mariculture: asking the right questions. Aquaculture 226:69–90

    Article  Google Scholar 

  • Troell M, Joyce A, Chopin T, Neori A, Buschmann AH, Fang J-G (2009) Ecological engineering in aquaculture - potential for integrated multi-trophic aquaculture (IMTA) in marine offshore systems. Aquaculture 297:1–9

    Article  Google Scholar 

  • Tsagkamilis P, Danielidis D, Dring MJ, Katsaros C (2009) Removal of phosphate by the green seaweed Ulva lactuca in a small-scale sewage treatment plant (Ios Island, Aegean Sea, Greece). J Appl Phycol 22:331–339

    Article  Google Scholar 

  • van Heerden P (1997) Inhibition of Ectocarpus siliculosus infestations with copper chloride in tank cultures of Gracilaria gracilis. J Appl Phycol 9:255–259

  • Vandermeulen H, Gordin H (1990) Ammonium uptake using Ulva (Chlorophyta) in intensive fishpond systems: mass culture and treatment of effluent. J Appl Phycol 2:363–374

    Article  CAS  Google Scholar 

  • Weger HG, Turpin DH (1989) Mitochondrial respiration can support NO3 and NO2 reduction during photosynthesis. Plant Physiol 89:409–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu RSS (1995) The environmental impact of marine fish culture: towards a sustainable future. Mar Pollut Bull 31:159–166

    Article  CAS  Google Scholar 

  • Yanagisawa M, Nakamura K, Ariga O, Nakasaki K (2011) Production of high concentrations of bioethanol from seaweeds that contain easily hydrolyzable polysaccharides. Process Biochem 46:2111–2116

    Article  CAS  Google Scholar 

  • Yokoyama H, Ishihi Y (2010) Bioindicator and biofilter function of Ulva spp. (Chlorophyta) for dissolved inorganic nitrogen discharged from a coastal fish farm — potential role in integrated multi-trophic aquaculture. Aquaculture 310:74–83

    Article  CAS  Google Scholar 

  • Zhou Y, Yang H, Hu H, Liu Y, Mao Y, Zhou H, Xu X, Zhang F (2006) Bioremediation potential of the macroalga Gracilaria lemaneiformis (Rhodophyta) integrated into fed fish culture in coastal waters of north China. Aquaculture 252:264–276

    Article  Google Scholar 

Download references

Acknowledgments

This study was partially funded by the Ministry of Science and Technology, Israel (Grant No. 3–99763). Special thanks to Lev-Yam fish farm for sharing their facilities and for their logistic support. The authors would like to thank Israel Oceanographic and Limnological Research and in particular Mr. Dov S. Rosen and Mr. Lazar Raskin of the Marine Geology and Coastal Processes Department, for providing the seawater temperature and upper layer currents data gathered near the head of the Hadera Coal Unloading Terminal, Israel. We are grateful to Guy Paz for preparing all figures and artwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leor Korzen.

Additional information

Avigdor Abelson and Alvaro Israel contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korzen, L., Abelson, A. & Israel, A. Growth, protein and carbohydrate contents in Ulva rigida and Gracilaria bursa-pastoris integrated with an offshore fish farm. J Appl Phycol 28, 1835–1845 (2016). https://doi.org/10.1007/s10811-015-0691-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-015-0691-5

Keywords