A field application feasibility assessment of naphthoquinone derivatives for the mitigation of freshwater diatom Stephanodiscus blooms

Abstract

Although many algicidal substances have been developed, their field application remains a serious challenge due to their high toxicity in the ecosystem and also due to economic reasons. Therefore, we evaluated the claim that naphthoquinone (NQ) derivatives can be used for the efficient mitigation of natural Stephanodiscus hantzschii blooms in freshwater. We tested a total of 23 algicidal NQ compounds to select the best based on the algicidal activity of S. hantzschii species. Among them, NQ 4–6 showed the highest algicidal activities (96 % at ≥0.2 μM). We conducted an acute toxicity assessment of the new algicide and found that NQ 4–6 had advanced solubility and lower toxicity, as represented by the survival rates of Selenastrum capricornutum, Daphnia magna, and Danio rerio, which are interconnected components of the freshwater ecosystem. None of these organisms seemed to be affected by the highest NQ concentration (2 μM), indicating a lack of significant toxic effects. These results indicate that the NQ 4–6 compound is promising for use as a selective control agent for S. hantzschii that does not cause negative side effects in the freshwater ecosystem. To evaluate the possibility of field application of NQ 4–6, we first performed microcosm tests. In the microcosm tests (60 L), S. hantzschii was completely eliminated 10 days after inoculation with the NQ 4–6 compound (0.2 μM). In the microcosm experiments, the dynamics of the biotic (except the phytoplankton) and abiotic factors showed similar trends in the control and treatment groups. Therefore, the NQ 4–6 compound has potential as an alternative algicidal substance to effectively mitigate natural S. hantzschii blooms.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Al-Bairuti GA, Shaw BJ, Handy RD, Henry TB (2013) Histopathological effects of waterborne copper nanoparticles and copper sulphate on the organs of rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 126:104–115

    Article  Google Scholar 

  2. Anderson DM (2009) Approaches to monitoring, control and management of harmful algal blooms (HABs). Ocean Coast Manage 52:342–347

    Article  Google Scholar 

  3. Baek SH, Son M, Bae SW, Shin K, Na DH, Cho H, Yamaguchi M, Kim OK, Kim SW (2013) Algicidal activity of the thiazolidinedione derivative TD49 against the harmful dinoflagellate Heterocapsa circularisquama in a mesocosm enclosure. J Appl Phycol 25:1555–1565

    CAS  Article  Google Scholar 

  4. Beakes G, Canter HM, Jaworski GHM (1988) Zoospores ultrastructure of Zygorhizidium affluens Canter and Z. planktonicum Canter, two chytrids parasitizing the diatom Asterionella formosa Hassall. Can J Bot 66:1054–1067

    Article  Google Scholar 

  5. Biggins J (1990) Evaluation of selected benzoquinones, naphthoquinones, and anthraquinones as replacements for phylloquinone in the AI acceptor site of the photosystem I reaction center. Biochemistry 29:7259–7264

  6. Campbell PJ, Arnold D, Brock T, Grandy N, Heger W, Heimbach F, Maund SJ, Streloke M (1999) Guidance document: higher-tier aquatic risk assessment for pesticides. SETAC, Europe, Brussels, Belgium, p 179

    Google Scholar 

  7. Closson KR, Paul EA (2014) Comparison of the toxicity of two chelated copper algaecides and copper sulfate to non-target fish. Bull Environ Contam Toxicol 93:660–665

    CAS  Article  PubMed  Google Scholar 

  8. Cullen JJ (1982) The deep chlorophyll maximum: comparing vertical profiles of chlorophyll a. Can J Fish Aquat Sci 39:791–803

    CAS  Article  Google Scholar 

  9. Desortová B (1981) Relationship between chlorophyll‐α concentration and phytoplankton biomass in several reservoirs in Czechoslovakia. Int Rev Hydrobiol 66:153–169

    Article  Google Scholar 

  10. Eaton RC, Farley RD (1974) Spawning cycle and egg production of zebrafish, Brachydanio rerio, in the laboratory. Copeia: 195–204

  11. Findlay JW, Dillard RF (2007) Appropriate calibration curve fitting in ligand binding assays. AAPS J 9(2):E260–E267

  12. Grandberg J, Harujula H (1982) On the relation of chlorophyll a to phytoplankton biomass in some Finnish freshwater lakes. Arch Hydrobiol 16:63–75

    Google Scholar 

  13. Grosell M, Blanchard J, Brix KV, Gerdes R (2007) Physiology is pivotal for interactions between salinity and acute copper toxicity to fish and invertebrates. Aquat Toxicol 84:162–172

    CAS  Article  PubMed  Google Scholar 

  14. Ha K, Jang MH, Joo GJ (2003) Winter Stephanodiscus bloom development in the Nakdong River regulated by an estuary dam and tributaries. Hydrobiologia 506–509:221–227

    Article  Google Scholar 

  15. Hanson MJ, Stefan HG (1984) Side effects of 58 years of copper sulfate treatment of the Fairmont lakes, Minnesota. J Am Water Resour Assoc 20:889–900

    CAS  Article  Google Scholar 

  16. Hijnen WAM, Dullemont YJ, Schijven JF, Hanzens-Brouwer AJ, Rosielle M, Medema G (2007) Removal and fate of Cryptosoridium parvum, Closteridium perfringens and small-sized centric diatoms (Stephanodiscus hantzschii) in slow sand filters. Water Res 41:2151–2162

    CAS  Article  PubMed  Google Scholar 

  17. Inbaraj JJ, Chignell CF (2004) Cytotoxic action of juglone and plumbagin: a mechanistic study using HaCaT keratinocytes. Chem Res Toxicol 17:55–62

    CAS  Article  PubMed  Google Scholar 

  18. Jeffrey SW, Humphrey GF (1997) Application of pigment methods to oceanography. Monographs on Oceanographic Methodology. UNESCO, Paris, pp 127–166

    Google Scholar 

  19. Jeong SY, Ishida K, Ito Y, Okada S, Murakami M (2003) Bacillamide, a novel algicide from the marine bacterium, Bacillus sp. SY-1, against the harmful dinoflagellate, Cochlodinium polykrikoides. Tetrahedron Lett 44:8005–8007

    CAS  Article  Google Scholar 

  20. Jewess PJ, Higgins J, Berry KJ, Moss SR, Boogaard AB, Khambay BPS (2002) Herbicidal action of 2‐hydroxy‐3‐alkyl‐1, 4‐naphthoquinones. Pest Manag Sci 58:234–242

    CAS  Article  PubMed  Google Scholar 

  21. Jung SW, Kwon OY, Lee JH, Han MS (2009) Effects of water temperature and silicate on the winter blooming diatom Stephanodiscus hantzschii (Bacillariophyceae) growing in eutrophic conditions in the lower Han River, South Korea. J Freshwater Ecol 24:219–226

    CAS  Article  Google Scholar 

  22. Jung SW, Kang YH, Katano T, Kim BH, Cho SY, Lee JH, Kim YO, Han MS (2010) Testing addition of Pseudomonas fluorescens HYK0210-SK09 to mitigate blooms of the diatom Stephanodiscus hantzschii in small- and large-scale mesocosms. J Appl Phycol 22:409–419

    Article  Google Scholar 

  23. Kang YH, Kim JD, Kim BH, Kong DS, Han MS (2005) Isolation and characterization of a bio-agent antagonistic to diatom, Stephanodiscus hantzschii. J Appl Microbiol 98:1030–1038

    CAS  Article  PubMed  Google Scholar 

  24. Kang YK, Cho SY, Kang YH, Katano T, Jin ES, Kong DS, Han MS (2008) Isolation, identification and characterization of algicidal bacteria against Stephanodiscus hantzschii and Peridinium bipes for the control of freshwater winter algal blooms. J Appl Phycol 20:375–386

    Article  Google Scholar 

  25. Kang YH, Jung SW, Joo JH, Han MS (2012) Use of immobilized algicidal bacteria to control natural freshwater diatom blooms. Hydrobiologia 683:151–162

    CAS  Article  Google Scholar 

  26. Kaya K, Liu YD, Shen YW, Xiao BD, Sano T (2005) Selective control of toxic Microcystis water blooms using lysine and malonic acid: an enclosure experiment. Environ Toxicol 20:170–178

    CAS  Article  PubMed  Google Scholar 

  27. Kenefick SL, Hrudey SE, Peterson HG, Prepas EE (1993) Toxin release from Microcystis aeruginosa after chemical treatment. Water Sci Technol 27:433–440

    CAS  Google Scholar 

  28. Kim SJ, Yim EC, Park IT, Kim SW, Cho H (2011) Comparison of the acute toxicities of novel algicides, thiazolidinedione derivatives TD49 and TD53, to various marine organisms. Environ Toxicol Chem 30(12):2810–2816

  29. Kim YO, Chang M, Ka SK, Han MS (2007) Grazing on algae and growth of the freshwater heterotrich ciliate Stentor roeselii. J Freshwater Ecol 22:361–363

    Article  Google Scholar 

  30. Kirchman DL, Dittel AI, Findlay SE, Fischer D (2004) Changes in bacterial activity and community structure in response to dissolved organic matter in the Hudson River, New York. Aquat Microb Ecol 35:243–257

    Article  Google Scholar 

  31. Kobanova GI, Genkal SI (1989) Representatives of the genus Stephanodiscus Grun. (Bacillariophyta) in the Angara River reservoirs and their ecological features. Biol Vnutr Vod 81:29–32

    Google Scholar 

  32. Kolmakov VI, Gaevskii NA, Ivanova EA, Dubovskaya OP, Gribovskaya IV, Kravchuk ES (2002) Comparative analysis of ecophysiological characteristics of Stephanodiscus hantzschii Grun. in the periods of its bloom in recreational water bodies. Russ J Ecol 33:97–103

    Article  Google Scholar 

  33. Korosi JB, Smol JP (2012) Examining the effects of climate change, acidic deposition, and copper sulphate poisoning on long-term changes in cladoceran assemblages. Aquat Sci 74:781–792

    CAS  Article  Google Scholar 

  34. Lam AKY, Prepas EE, Spink D, Hrudey SE (1995) Chemical control of hepatotoxic phytoplankton blooms: implications for human health. Water Res 29:1845–1854

    CAS  Article  Google Scholar 

  35. Leitao M (1995) Eutrophication du Loir et son incidence surlúsine déau potable de la Fleche (Sar the). Techn Sci Meth 1:31–37

    Google Scholar 

  36. Li FM, Hu HY (2005) Isolation and characterization of a novel antialgal allelochemical from Phragmites communis. Appl Environ Microb 71:6545–6553

    CAS  Article  Google Scholar 

  37. Lin LC, Yang LL, Chou CJ (2003) Cytotoxic naphthoquinones and plumbagic acid glucosides from Plumbago zeylanica. Phytochemistry 62:619–622

    CAS  Article  PubMed  Google Scholar 

  38. Liu J, Zhang H, Yang W, Gao J, Ke Q (2004) Studies on biquaternary ammonium salt algaecide for removing red tide algae. Mar Sci Bull 6:60–65

    Article  Google Scholar 

  39. Mitrovic SM, Westhorpe DP, Kobayashi T, Baldwin DS, Ryan D, Hitchcock JN (2014) Short-term changes in zooplankton density and community structure in response to different sources of dissolved organic carbon in an unconstrained lowland river: evidence for food web support. J Plankton Res 36(6):1488–1500

  40. Monks TJ, Hanzlik RP, Cohen GM, Ross D, Graham DG (1992) Quinone chemistry and toxicity. Toxicol Appl Pharm 112:2–16

    CAS  Article  Google Scholar 

  41. O’Brien PJ (1991) Molecular mechanisms of quinone cytotoxicity. Chem-Biol Interact 80:1–41

    Article  PubMed  Google Scholar 

  42. OECD (1992) Test no. 203: fish, acute toxicity test, OECD guidelines for the testing of chemicals, section 2. OECD Publishing, Paris

    Google Scholar 

  43. OECD (2004) Test no. 202: Daphnia sp., acute immobilization test, OECD guidelines for the testing of chemicals, section 2. OECD Publishing, Paris

    Google Scholar 

  44. OECD (2011) Test no. 201: freshwater alga and cyanobacteria, growth inhibition test, OECD guidelines for the testing of chemicals, section 2. OECD Publishing, Paris

    Google Scholar 

  45. Oettmeier W, Dierig C, Masson K (1986) QSAR of 1,4‐naphthoquinones as inhibitors of photosystem II electron transport. Quant Struct‐Act Relat 5:50–54

    CAS  Article  Google Scholar 

  46. Oksiyuk OP (1965) Stephanodiscus hantzschii Grun. as an aromatic organisms capable of giving fish smell to water. Gidrobiol Zh 1:50–53

    Google Scholar 

  47. Philips EJ, Hansen P, Velardi T (1992) Effect of the herbicide diquat on the growth of microalgae and cyanobacteria. B Environ Contam Tox 49:750–756

    Google Scholar 

  48. Pierce RH, Henry MS, Higham CJ, Blum P, Sengco MR, Anderson DM (2004) Removal of harmful algal cells (Karenia brevis) and toxins from seawater culture by clay flocculation. Harmful Algae 3:141–148

    Article  Google Scholar 

  49. Pitta P, Giannakourou A, Divanach P, Kentouri M (1998) Planktonic food web in marine mesocosms in the eastern Mediterranean: bottom-up or top-down regulation? Hydrobiologia 365:97–105

    Google Scholar 

  50. Porter KG, Feig YS (1980) The use of DAPI for identification and counting aquatic microflora. Limnol Oceanogr 25:943–948

    Article  Google Scholar 

  51. Rahmoun NM, Boucherit-Otmani Z, Boucherit K, Benabdallah M, Villemin D, Choukchou-Braham N (2012) Antibacterial and antifungal activity of lawsone and novel naphthoquinone derivatives. Med Maladies Infect 42:270–275

    CAS  Article  Google Scholar 

  52. Riemann L, Steward GF, Azam F (2000) Dynamics of bacterial community composition and activity during a microcosm diatom bloom. Appl Environ Microb 66:578–587

    CAS  Article  Google Scholar 

  53. Rostkowska H, Nowak MJ, Lapinski L, Adamowicz L (1998) Molecular structure and infrared spectra of 2-hydroxy-1, 4-naphthoquinone; experimental matrix isolation and theoretical Hartree–Fock and post Hartree–Fock study. Spectrochim Acta Mol Biomol Spectrosc 54(8):1091–1103

    Article  Google Scholar 

  54. Round FE, Crawford RM, Mann DG (1990) The diatoms: biology and morphology of the genera. Cambridge University Press, Cambridge

    Google Scholar 

  55. Sasaki K, Abe H, Yoshizaki F (2002) In vivo antifungal activity of naphthoquinone derivatives. Biol Pharm Bull 25:669–670

    CAS  Article  PubMed  Google Scholar 

  56. Schrader KK, Regt MQ, Tucker CS, Duke SO (1997) A rapid bioassay for selective algicides. Weed Technol 11:767–774

    CAS  Google Scholar 

  57. Schrader KK, Nanayakkara NPD, Tucker CS, Rimando AM, Ganzera M, Schaneberg BT (2003) Novel derivatives of 9,10-anthraquinone are selective algicides against the musty-odor cyanobacterium Oscillatoria perornata. Appl Environ Microb 69:5319–5327

    CAS  Article  Google Scholar 

  58. Sigee DC, Glenn R, Andrews MJ, Bellinger EG, Butler RD, Epton HAS, Hendry RD (1999) Biological control of cyanobacteria: principles and possibilities. Hydrobiologia 395/396:161–172

    Article  Google Scholar 

  59. Sun J, Feng Y, Zhou F, Song S, Jiang Y, Ding C (2013) Top-down control of spring surface phytoplankton blooms by microzooplankton in the Central Yellow Sea, China. Deep Sea Res II 97:51–60

    Article  Google Scholar 

  60. Tandon VK, Chhor RB, Singh RV, Rai S, Yadav DB (2004) Design, synthesis and evaluation of novel 1,4-naphthoquinone derivatives as antifungal and anticancer agents. Bioorg Med Chem Lett 14:1079–1083

    CAS  Article  PubMed  Google Scholar 

  61. Tangmouo JG, Meli AL, Komguem J, Kuete V, Ngounou FN, Lontsi D, Beng VP, Choudhary MI, Sondengam BL (2006) Crassiflorone, a new naphthoquinone from Diospyros crassiflora (Hien). Tetrahedron Lett 47:3067–3070

    CAS  Article  Google Scholar 

  62. U.S. Environmental Protection Agency (1996a) Ecological effects test guidelines OPPTS 850.5400 algal toxicity, Tiers I and II. USEPA, Washington DC, EPA-712-C-96-164

  63. U.S. Environmental Protection Agency (1996b) Ecological effects test guidelines, OPPTS 850.1010: aquatic invertebrate acute toxicity test, fresh-water daphnids. USEPA, Washington DC, EPA712-C-96-114

  64. U.S. Environmental Protection Agency (1996c) Ecological effects test guidelines OPPTS 850.1075 fish acute toxicity test, freshwater and marine. USEPA, Washington DC, EPA712-C-96-118

  65. U.S. Environmental Protection Agency (2002) Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms. USEPA, Washington DC, EPA-821-R-02-012

    Google Scholar 

  66. Visser PM, Ibelings BW, Van der Veer B, Koedood J, Mur LR (1996) Artificial mixing prevents nuisance blooms of the cyanobacterium Microcystis in lake Nieuw Meer, the Netherlands. Freshwater Biol 36:435–445

    Article  Google Scholar 

  67. Wagner N, Reichenbecher W, Teichmann H, Tappeser B, Lotters S (2013) Questions concerning the potential impact of glyphosate-based herbicides on amphibians. Environ Toxicol Chem 32:1688–1700

  68. Wilson RW, Taylor EW (1993) The physiological responses of freshwater rainbow trout, Oncorhynchus mykiss, during acutely lethal copper exposure. J Comp Physiol B 163:38–47

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This study has been supported by the Korea Ministry of Environment (2013001470001).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Myung-Soo Han.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Joo, J., Kang, Y., Park, B.S. et al. A field application feasibility assessment of naphthoquinone derivatives for the mitigation of freshwater diatom Stephanodiscus blooms. J Appl Phycol 28, 1735–1746 (2016). https://doi.org/10.1007/s10811-015-0686-2

Download citation

Keywords

  • Eco-friendly mitigation
  • Ecosystem
  • Microcosm
  • Naphthoquinone compounds
  • Stephanodiscus hantzschii