Advertisement

Journal of Applied Phycology

, Volume 28, Issue 2, pp 967–978 | Cite as

Identification of bidirectional hydrogenase genes and their co-transcription in unicellular halotolerant cyanobacterium Aphanothece halophytica

  • Saranya Phunpruch
  • Samart Taikhao
  • Aran IncharoensakdiEmail author
Article

Abstract

The halotolerant cyanobacterium Aphanothece halophytica has been shown to produce H2 via dark fermentation of accumulated glycogen under anoxic condition. One set of hox genes encoding a bidirectional hydrogenase is present in A. halophytica. In this study, the nucleotide sequence and the transcriptional analysis of hox genes in A. halophytica were investigated. The results revealed that A. halophytica contained five structural genes, hoxE, hoxF, hoxU, hoxY, and hoxH, without an insertion of other open reading frames (ORFs). The conserved cysteine motifs of iron-sulfur clusters involved in an electron transfer were found in all Hox subunits. The nucleotide and deduced amino acid sequences of hox genes in A. halophytica showed the highest identity and similarity to those of Halothece sp. PCC 7418. By reverse transcription polymerase chain reaction (RT-PCR) analysis, hox genes in A. halophytica were co-transcribed as a single operon. Under nitrogen-deprived condition, the transcripts of hoxH, glgB, coxA, ndhB, and psaA were upregulated whereas those of glgP and narB were downregulated which resulted in an increase of H2 production, H2ase activity, glycogen content, and dark respiration rate.

Keywords

Hydrogenase gene Co-transcription Cyanobacteria Aphanothece halophytica 

Notes

Acknowledgments

This study was financially supported by research grant from the Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang. A. Incharoensakdi thanks the Ratchadaphiseksomphot Endowment Fund of Chulalongkorn University, for the research grant under Frontier Research Energy Cluster.

References

  1. Allen MM, Law A, Evans EH (1990) Control of photosynthesis during nitrogen depletion and recovery in a non-nitrogen-fixing cyanobacterium. Arch Microbiol 153:428–431CrossRefGoogle Scholar
  2. Ananyev G, Carrieri D, Dismukes GC (2008) Optimization of metabolic capacity and flux through environmental cues to maximize hydrogen production by the cyanobacterium “Arthrospira maxima”. Appl Environ Microbiol 74:6102–6113CrossRefPubMedPubMedCentralGoogle Scholar
  3. Antal T, Oliveira P, Lindblad P (2006) The bidirectional hydrogenase in the cyanobacterium Synechocystis sp. strain PCC 6803. Int J Hydrogen Energy 31:1439–1444CrossRefGoogle Scholar
  4. Appel J, Schulz R (1996) Sequence analysis of an operon of a NAD(P)-reducing nickel hydrogenase from the cyanobacterium Synechocystis sp. PCC 6803 gives additional evidence for direct coupling of the enzyme to NAD(P)-dehydrogenase (complex I). Biochim Biophys Acta 1298:141–147CrossRefPubMedGoogle Scholar
  5. Axelsson R, Lindblad P (2002) Transcriptional regulation of Nostoc hydrogenases: effects of oxygen, hydrogen, and nickel. Appl Environ Microbiol 68:444–447CrossRefPubMedPubMedCentralGoogle Scholar
  6. Baebprasert W, Lindblad P, Incharoensakdi A (2010) Response of H2 production and Hox-hydrogenase activity to external factors in the unicellular cyanobacteriumSynechocystis sp. PCC 6803. Int J Hydrogen Energy 35:6611–6616CrossRefGoogle Scholar
  7. Baebprasert W, Jantaro S, Khetkorn W, Lindblad P, Incharoensakdi A (2011) Increased H2 production in the cyanobacterium Synechocystis sp. strain PCC 6803 by redirecting the electron supply via genetic engineering of the nitrate assimilation pathway. Metab Eng 13:610–616CrossRefPubMedGoogle Scholar
  8. Barz M, Beimgraben C, Staller T, Germer F, Opitz F, Marquardt C, Schwarz C, Gutekunst K, Vanselow KH, Schmitz R, LaRoche J, Schulz R, Appel J (2010) Distribution analysis of hydrogenases in surface waters of marine and freshwater environments. Plos One 5, e13846CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bertani G (1951) Studies on lysogenesis. I The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62:293–300PubMedPubMedCentralGoogle Scholar
  10. Boison G, Schmitz O, Mikheeva L, Shestakov S, Bothe H (1996) Cloning, molecular analysis and insertional bidirectional hydrogenase genes from the Anacystisnidulans mutagenesis of the cyanobacterium. FEBS Lett 394:153–158CrossRefPubMedGoogle Scholar
  11. Boison G, Schmitz O, Schmitz B, Bothe H (1998) Unusual gene arrangement of the bidirectional hydrogenase and functional analysis of its diaphorase subunit HoxU in respiration of the unicellular cyanobacterium Anacystisnidulans. Curr Microbiol 36:253–258CrossRefPubMedGoogle Scholar
  12. Boison G, Bothe H, Schmitz O (2000) Transcriptional analysis of hydrogenase genes in the cyanobacteria Anacystisnidulansand Anabaena variabilis monitored by RT-PCR. Curr Microbiol 40:315–321CrossRefPubMedGoogle Scholar
  13. Bothe H, Schmitz O, Yates MG, Newton WE (2010) Nitrogen fixation and hydrogen metabolism in cyanobacteria. Microbiol Mol Biol Rev 74:529–551CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dubois M, Gilles KA, Hamilton JK, Reberr PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356CrossRefGoogle Scholar
  15. Ernst A, Kirschenlohr H, Diez J, Böger P (1984) Glycogen content and nitrogenase activity in Anabaena variabilis. Arch Microbiol 140:120–125CrossRefGoogle Scholar
  16. Ferreira D, Pinto F, Moradas-Ferreira P, Mendes MV, Tamagnini P (2009) Transcription profiles of hydrogenases related genes in the cyanobacterium Lyngbya majuscula CCAP 1446/4. BMC Microbiol 9:1–12CrossRefGoogle Scholar
  17. Flores E, Frias JE, Rubio LM, Herrero A (2005) Photosynthetic nitrate assimilation in cyanobacteria. Photosynth Res 83:117–133CrossRefPubMedGoogle Scholar
  18. Garlick S, Oren A, Padan E (1977) Occurrence of facultative anoxygenic photosynthesis among filamentous and unicellular cyanobacteria. J Bacteriol 129:623–629PubMedPubMedCentralGoogle Scholar
  19. Ghirardi ML, Posewitz MC, Maness PC, Dubini A, Yu J, Seibert M (2007) Hydrogenases and hydrogen photoproduction in oxygenic photosynthetic organisms. Annu Rev Plant Biol 58:71–91CrossRefPubMedGoogle Scholar
  20. Gutekunst K, Phunpruch S, Schwarz C, Schuchardt S, Schulz-Friedrich R, Appel J (2005) LexA regulates the bidirectional hydrogenase in the cyanobacterium Synechocystis sp. PCC 6803 as a transcription activator. Mol Microbiol 58:810–823CrossRefPubMedGoogle Scholar
  21. Higgins D, Thompson J, Gibson T, Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTALW: Improving the sensitivity for progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefPubMedPubMedCentralGoogle Scholar
  22. Houchins JP, Burris RH (1981) Occurrence and localization of two distinct hydrogenase in the heterocystous cyanobacterium Anabaena sp. strain 7120. J Bacteriol 146:209–214PubMedPubMedCentralGoogle Scholar
  23. Incharoensakdi A (2006) Nitrogen metabolism in cyanobacteria under osmotic stress. In: Rai AK, Takabe T (eds) Abiotic stress tolerance in plants. Springer, Dordrecht, pp 195–212CrossRefGoogle Scholar
  24. Kaneko T, Nakamura Y, Wolk CP et al (2001) Complete genomic sequence of the filamentous nitrogen fixing cyanobacterium Anabaena sp. strain PCC 7120. DNA Res 8:205–213CrossRefPubMedGoogle Scholar
  25. Krasikov V, Wobeser EA, Yeremenko N, Ibelings BW, Huisman J, Matthijs HCM (2010) Gene expression of the cyanobacterium Synechocystis PCC 6803 in response to nitrogen starvation. In: Wobeser EA (ed) Genome-wide expression analysis of environmental stress in the cyanobacterium Synechocystis PCC 6803. UvA-DARE, Amsterdam, pp 55–74Google Scholar
  26. Ludwig M, Schulz-Friedrich R, Appel J (2006) Occurrence of hydrogenases in cyanobacteria and anoxygenic photosynthetic bacteria: implications for the phylogenetic origin of cyanobacterial and algal hydrogenases. J Mol Evol 63:758–768CrossRefPubMedGoogle Scholar
  27. MacKinney G (1941) Absorption of light by chlorophyll solutions. J Biol Chem 140:315–322Google Scholar
  28. Melis A, Zhang LP, Forestier M, Ghirardi ML, Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122:127–135CrossRefPubMedPubMedCentralGoogle Scholar
  29. Min H, Sherman LA (2010) Hydrogen production by the unicellular, diazotroph cyanobacterium Cyanothece sp. strain ATCC 51142 under conditions of continuous light. Appl Environ Microbiol 76:4293–4301CrossRefPubMedPubMedCentralGoogle Scholar
  30. Oliveira P, Lindblad P (2005) LexA, a transcription regulator binding in the promoter region of the bidirectional hydrogenase in the cyanobacterium Synechocystis sp. PCC 6803. FEMS Microbiol Lett 251:59–66CrossRefPubMedGoogle Scholar
  31. Osanai T, Imamura S, Asayama M, Shirai M, Suzuki I, Murata N, Tanaka K (2006) Nitrogen induction of sugar catabolic gene expression in Synechocystis sp. PCC 6803. DNA Res 13:185–195CrossRefPubMedGoogle Scholar
  32. Phunpruch S, Baebprasert W, Thongpeng C, Incharoensakdi A (2006) Nucleotide sequencing and transcriptional analysis of uptake hydrogenase genes in the filamentous N2-fixing cyanobacterium Anabaena siamensis. J Appl Phycol 18:713–722CrossRefGoogle Scholar
  33. Schmitz O, Bothe H (1996) Thediaphorase subunit HoxU of the bidirectional hydrogenase as electron transferring protein in cyanobacterial respiration? Naturwissenschaften 83:525–527Google Scholar
  34. Schmitz O, Boison G, Hilscher R, Hundeshagen B, Zimmer W, Lottspeich F, Bothe H (1995) Molecular biological analysis of a bidirectional hydrogenase from cyanobacteria. Eur J Biochem 233:266–276CrossRefPubMedGoogle Scholar
  35. Sheremetieva ME, Troshina OY, Serebryakova LT, Lindblad P (2002) Identification of hox genes and analysis of their transcription in the unicellular cyanobacterium Gloeocapsa alpicola CALU 743 growing under nitrate-limiting conditions. FEMS Microbiol Lett 214:229–233CrossRefPubMedGoogle Scholar
  36. Taikhao S, Junyapoon S, Incharoensakdi A, Phunpruch S (2013) Factors affecting biohydrogen production by unicellular halotolerant cyanobacterium Aphanothece halophytica. J Appl Phycol 25:575–585CrossRefGoogle Scholar
  37. Taikhao S, Incharoensakdi A, Phunpruch S (2015) Dark fermentative hydrogen production by the unicellular halotolerant cyanobacterium Aphanothece halophytica grown in seawater. J Appl Phycol 27:187–196CrossRefGoogle Scholar
  38. Tamagnini P, Costa JL, Almeida L, Oliveira MJ, Salema R, Lindblad P (2000) Diversity of cyanobacterial hydrogenases, a molecular approach. Curr Microbiol 40:356–361CrossRefPubMedGoogle Scholar
  39. Tamagnini P, Axelsson R, Lindblad P, Oxelfelt F, Wünschiers R (2002) Hydrogenase and hydrogenase metabolism of cyanobacteria. Microbiol Mol Biol Rev 66:1–20CrossRefPubMedPubMedCentralGoogle Scholar
  40. Tamagnini P, Leitão E, Oliveira P, Ferreira D, Pinto F, Harris DJ, Heidorn T, Lindblad P (2007) Cyanobacterial hydrogenases: diversity, regulation and applications. FEMS Microbiol Rev 31:692–720CrossRefPubMedGoogle Scholar
  41. Troshina O, Serebryakova L, Sheremetieva M, Lindblad P (2002) Production of H2 by the unicellular cyanobacterium Gloeocapsaalpicola CALU743 during fermentation. Int J Hydrogen Energy 27:1283–1289CrossRefGoogle Scholar
  42. Volbeda A, Charon MH, Piras C, Hatchikian EC, Frey M, Fontecilla-Camps JC (1995) Crystal structure of the nickel-iron hydrogenase from Desulfovibriogigas. Nature 373:580–587CrossRefPubMedGoogle Scholar
  43. Welsh EA, Liberton M, Stöckel J et al (2008) The genome of Cyanothece 51142, a unicellular diazotrophic cyanobacterium important in the marine nitrogen cycle. Proc Natl Acad Sci USA 39:15094–15099CrossRefGoogle Scholar
  44. Wiangnon K, Raksajit W, Incharoensakdi A (2007) Presence of a Na+-stimulated P-type ATPase in the plasma membrane of the alkaliphilic halotolerant cyanobacterium Aphanothece halophytica. FEMS Microbiol Lett 270:139–145CrossRefPubMedGoogle Scholar
  45. Wünschiers R, Axelsson R, Vellguth M, Lindblad P (2007) Experimental and bioinformatic approaches for analyzing and visualizing cyanobacterial nitrogen and hydrogen metabolism. Electron J Biotechnol 10:549–562CrossRefGoogle Scholar
  46. Zhang L, Happe T, Melis A (2002) Biochemical and morphological characterization of sulphur-deprived and H2-producing Chlamydomonas reinhardtii (green alga). Planta 214:552–561CrossRefPubMedGoogle Scholar
  47. Zhang X, Shiraiwa Y, Sui ZH, Zhang XC (2005a) Cloning and characterization of hoxY gene from Arthrospira and Spirulina and its application in phylogenetic studies. Periodical Ocean Univ China 35:1021–1025Google Scholar
  48. Zhang X, Zhang X, Shiraiwa Y, Mao Y, Sui Z, Liu J (2005b) Cloning and characterization of hoxH genes from Arthrospira and Spirulina and application in phylogenetic study. Mar Biotechnol 7:287–296CrossRefPubMedGoogle Scholar
  49. Zhang Z, Pendse ND, Phillips KN, Cotner JB, Khodursky A (2008) Gene expression patterns of sulfur starvation in Synechocystis sp. PCC 6803. BMC Genomics 9:1–14CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Saranya Phunpruch
    • 1
    • 2
  • Samart Taikhao
    • 2
  • Aran Incharoensakdi
    • 3
    Email author
  1. 1.Bioenergy Research Unit, Faculty of ScienceKing Mongkut’s Institute of Technology LadkrabangBangkokThailand
  2. 2.Department of Biology, Faculty of ScienceKing Mongkut’s Institute of Technology LadkrabangBangkokThailand
  3. 3.Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of ScienceChulalongkorn UniversityBangkokThailand

Personalised recommendations