Journal of Applied Phycology

, Volume 28, Issue 2, pp 783–793 | Cite as

Two-tier vessel for photoautotrophic high-density cultures

  • Lars Bähr
  • Arne Wüstenberg
  • Rudolf EhwaldEmail author


Two-tier vessels, developed for culturing of microalgae and cyanobacteria at high cell density on a shaken platform, were assembled from a flat lower chamber to be filled with a CO2 buffer and an upper flat sterile chamber for the culture that was separated from the lower chamber by a porous polypropylene membrane. Diffusive gas exchange with the atmosphere was controlled by the O2 outlet channel. Referred to surface area, rates of CO2 transfer to a shaken weakly alkaline buffer solution across the membrane were higher than those reached on the conventional pathway through the free upper liquid surface. Membrane-mediated CO2 supply enabled rapid growth of Synechocystis sp. PCC 6803 and Synechococcus sp. PCC 7002 up to ultrahigh cell density. The biomass (dry weight) concentration of Synechococcus cultures reached more than 30 g L−1 on a buffered medium with adequate concentrations of mineral nutrients. An increase of 15 to 20 g L−1 was observed during repeated two-day cycles. Separate pathways for CO2 supply and oxygen outlet prevented significant loss of CO2. Convective gas flow through the oxygen outlet channel enabled the estimation of the O2 generation rate. The permeability of the channel for diffusive O2/N2 exchange limited the O2 concentration to a moderate value. It is concluded that shaken flat cultures using CO2 supply through a porous hydrophobic membrane and diffusive release of O2 through a separate pathway are promising for research on microalgae and cyanobacteria.


Bicarbonate Cyanobacteria Microalgae Oxygen stress Synechocystis sp. PCC 6803 Synechococcus sp. PCC 7002 



Authors are grateful to Prof. Dr. T. Buckhout and Dr. R. Steuer, Institute of Biology, Humboldt-University, for improving the language and critical comments.


  1. Aikawa S, Nishida A, Ho S-H, Chang J-S, Hasunuma T, Kondo A (2014) Glycogen production for biofuels by the euryhaline cyanobacteria Synechococcus sp. strain PCC 7002 from an oceanic environment. Biotechnol Biofuels 7:88. doi: 10.1186/1754-6834-7-88 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bähr L (2013) Wachstum von Cyanobakterien bei extrem hoher Zelldichte in Starklicht-Photobioreaktoren mit membranvermitteltem Eintrag von anorganischem Kohlenstoff in Kulturmedien mit hohen Konzentrationen von HCO3 und mineralischen Nährstoffen. Diploma thesis, Humboldt-University Berlin, Germany 55 ppGoogle Scholar
  3. Beardall J, Raven JA (2013) Limits to phototrophic growth in dense culture: CO2 supply and light. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, pp 91–97CrossRefGoogle Scholar
  4. Bilad MR, Arafat HA, Vankelecom IFJ (2014) Membrane technology in microalgae cultivation and harvesting. Biotechnol Adv 32:1283–1300CrossRefPubMedGoogle Scholar
  5. Dankwerts PV (1965) The absorption of gases in liquids. Pure Appl Chem 10:625–864Google Scholar
  6. Doucha J, Livansky K (2009) Outdoor open thin-layer microalgal photobioreactor: potential productivity. J Appl Phycol 21:111–117CrossRefGoogle Scholar
  7. Drexler IL, Yeh DH (2014) Membrane applications for microalgae cultivation and harvesting: a review. Rev Environ Sci Biotechnol 13:487–504CrossRefGoogle Scholar
  8. Edsall JT (1969) Carbon dioxide, carbonic acid and bicarbonate ion: physical properties and kinetics of interconversion. In: Forster E, Edsall J T, Otis AB, Roughton F J W (eds.) CO2: chemical, biochemical and physiological aspects. NASA SP-188, pp. 15–34Google Scholar
  9. Ehwald R, Bähr L, Wüstenberg A, Soh J H (2014) Method, photobioreactor and photosynthesis layer for the culture of photoautotrophic microorganisms. USA patent application US 20140315280 A1Google Scholar
  10. Ehwald R, Bähr L, Wüstenberg A (2015) Research Photobioreactor. USA patent application US 20150087049 A1Google Scholar
  11. Fontes G, Moreno AG, Vargas MA (1989) Analysis of biomass quality and photosynthetic efficiency of a nitrogen-fixing cyanobacterium grown outdoors with two agitation systems. Biotechnol Bioeng 34:819–824CrossRefPubMedGoogle Scholar
  12. Gitelson A, Hu Q, Richmond A (1996) Photic volume in photobioreactors supporting ultrahigh population densities of the photoautotroph Spirulina platensis. Appl Environ Microbiol 62:1570–1573PubMedPubMedCentralGoogle Scholar
  13. Hagemann M (2011) Molecular biology of cyanobacterial salt acclimation. FEMS Microbiol Rev 35:87–123CrossRefPubMedGoogle Scholar
  14. Hu Q, Richmond A (1996) Productivity and photosynthetic efficiency of Spirulina platensis as effected by light intensity, algal density and rate of mixing in a flat pane photobioreactor. J Appl Phycol 8:139–145CrossRefGoogle Scholar
  15. Hu Q, Guterman H, Richmond A (1996) A flat inclined modular photobioreactor (FIMP) for outdoor mass cultivation of photoautotrophs. Biotechnol Bioeng 51:51–60CrossRefPubMedGoogle Scholar
  16. Hu Q, Kurano N, Kawachi M, Iwasaki I, Miyachi S (1998a) Ultrahigh-cell-density culture of a marine green alga Chlorococcum littorale in a flat-pane photobioreactor. Appl Microbiol Biotechnol 49:655–662CrossRefGoogle Scholar
  17. Hu Q, Zarmi Y, Richmond A (1998b) Combined effects of light intensity, light-path and culture density on output rate of Spirulina platensis (Cyanobacteria). Eur J Phycol 33:165–171CrossRefGoogle Scholar
  18. Hüseman W, Barz W (1977) Photoautotrophic growth and photosynthesis in cell suspension cultures of Chenopodium rubrum. Physiol Plant 40:77–81CrossRefGoogle Scholar
  19. Kang LJ, Chen XJ, Pan XJ, Chang FY, Liu YD (2009) Effect of elevated bicarbonate concentration on growth, chlorophyll A fluorescence and ultrastructure of Microcystis aeruginosa (cyanobacterium). Fresenius Environ Bull 18:687–693Google Scholar
  20. Lehr F, Posten C (2009) Closed photo-bioreactors as tools for biofuel production. Curr Opin Biotechnol 20:280–285CrossRefPubMedGoogle Scholar
  21. Long SP, Humphries MS, Falkowski PG (1994) Photoinhibition of photosynthesis in nature. Annu Rev Plant Physiol Plant Mol Biol 45:633–662CrossRefGoogle Scholar
  22. Ludwig M, Bryant DA (2011) Transcription profiling of the model cyanobacterium Synechococcus sp. strain PCC 7002 by Next-Gen (SOLIDTM). Front Microbiol 2:41. doi: 10.3389/fmicb.2011.00041 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Ludwig M, Bryant DA (2012) Acclimation of the global transcriptome of the cyanobac- terium Synechococcus sp. strain PCC 7002 to nutrient limitations and different nitrogen sources. Front Microbiol 3:145. doi: 10.3389/fmicb.2012.00145 PubMedPubMedCentralGoogle Scholar
  24. Moheimani NR (2013) Inorganic carbon and pH effect on growth and lipid productivity of Tetraselmis suecica and Chlorella sp (Chlorophyta) grown outdoors in bag photobioreactors. J Appl Phycol 25:387–398CrossRefGoogle Scholar
  25. Moheimani N, Borowitzka MA (2011) Increase CO2 and the effect of pH on growth and calcification of Pleurochrysis carterae and Emiliania huxleyi (Haptophyta) in semicontuous cultures. Appl Microbiol Biotechnol 90:1399–1407CrossRefPubMedGoogle Scholar
  26. Pörs Y, Wüstenberg A, Ehwald R (2010) A batch culture method for microalgae and cyanobacteria with CO2 supply through polyethylene membranes. J Phycol 46:825–830CrossRefGoogle Scholar
  27. Richmond A (2003) Growth characteristics of ultrahigh density microalgal cultures. Biotechnol Bioprocess Eng 8:349–353CrossRefGoogle Scholar
  28. Richmond A, Zou N (1999) Efficient utilization of high photon irradiance for mass production of photoautotrophic micro-organisms. J Appl Phycol 11:123–127CrossRefGoogle Scholar
  29. Rippka R, Derulles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61Google Scholar
  30. Sawdon A, Peng C-A (2014) Internal deoxygenation of tubular photobioreactor for mass production of microalgae by perfluorcarbon emulsion. J Chem Technol Biotechnol B. doi: 10.1002/jctb.4444 Google Scholar
  31. Souza C, Compadre A, Vermue MH, Wijffels RH (2013) Effect of oxygen at low and high light intensities on the growth of Neochloris oleoabundans. Algal Res 2:122–126CrossRefGoogle Scholar
  32. Tripathi U, Sarada R, Ravishhankar GA (2001) A culture method for microalgal forms using two-tier vessel providing carbon-dioxide environment: studies on growth and carotenoid production. World J Microbiol Biotechnol 17:325–329CrossRefGoogle Scholar
  33. Tsoglin LN, Gabel BV, Falkovich TN, Semenenko VE (1996) Closed photobioreactors for microalgal cultivation. Russ J Plant Physiol 43:131–136Google Scholar
  34. Warburg O, Krippahl G (1960) Weiterentwicklung der manometrischen Methoden (Carbonatgemische). Z Naturforsch C 15b:364–367Google Scholar
  35. Warburg O, Geissler W, Lorenz S (1961) CO2 - Drucke über Bicarbonat-Carbonatgemischen. Z Naturforsch C 16b:283Google Scholar
  36. Wüstenberg A, Pörs Y, Ehwald R (2011) Culturing of stoneworts and submersed angiosperms with phosphate uptake exclusively from an artificial sediment. Freshw Biol 56:1531–1539CrossRefGoogle Scholar
  37. Zou N, Richmond A (2000) Light-path length and population density in photoacclimation of Nannochloropsis sp. (Eustigmatophyceae). J Appl Phycol 12:349–354CrossRefGoogle Scholar
  38. Zou N, Zhang CW, Cohen Z, Richmond A (2000) Production of cell mass and eicosapentaenoic acid (EPA) in ultrahigh cell density cultures of Nannochloropsis sp. (Eustigmatophyceae). Eur J Phycol 35:127–133CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Institute of BiologyHumboldt University BerlinBerlinGermany

Personalised recommendations