Skip to main content

Advertisement

Log in

Carbon dioxide and poultry waste utilization for production of polyhydroxyalkanoate biopolymers by Nostoc muscorum Agardh: a sustainable approach

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The new paradigm is to view wastes as resources for sustainable development. In this regard, the feasibility of poultry waste and CO2 utilization for cultivation of a filamentous nitrogen-fixing cyanobacterium, Nostoc muscorum Agardh, was investigated for production polyhydroxyalkanoates, the biodegradable polymers. This cyanobacterium showed profound rise in biomass yield with up to 10 % CO2 supply in airstream with an aeration rate of 0.1 vvm. Maximum biomass yield of 1.12 g L−1 was recorded for 8 days incubation period, thus demonstrating a CO2 biofixation rate of 0.263 g L−1 day−1 at 10 % (v/v) CO2-enriched air. Poultry litter (PL) supplementation also had a positive impact on the biomass yield. The nutrient removal efficiency of N. muscorum was reflected in the significant reduction in nutrient load of PL over the experimental period. A maximum poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) [P(3HB-co-3HV)] copolymer yield of 774 mg L−1 (65 % of dry cell wt.), the value almost 11-fold higher than the control, was recorded in 10 g L−1 PL-supplemented cultures with 10 % CO2 supply under the optimized condition, thus demonstrating that N. muscorum has good potential for CO2 biomitigation and poultry waste remediation while simultaneously producing eco-friendly polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Akiyama H, Okuhata H, Onizuka T, Kanai S, Hirano M, Tanaka S, Sasaki K, Miyasaka H (2011) Antibiotics-free stable polyhydroxyalkanoate (PHA) production from carbon dioxide by recombinant cyanobacteria. Biores Technol 102:11039–11042

    Article  CAS  Google Scholar 

  • American Public Health Association (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington, DC

    Google Scholar 

  • Bhati R, Mallick N (2012) Production and characterization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) co-polymer by a N2-fixing cyanobacterium, Nostoc muscorum Agardh. J Chem Technol Biotechnol 87:505–512

    Article  CAS  Google Scholar 

  • Bhati R, Mallick N (2015) Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer production by the diazotrophic cyanobacterium Nostoc muscorum Agardh: process optimization and polymer characterization. Algal Res 7:78–85

    Article  Google Scholar 

  • Bhati R, Samantaray S, Sharma L, Mallick N (2010) Poly-β-hydroxybutyrate accumulation in cyanobacteria under photoautotrophy. Biotechnol J 5:1181–1185

    Article  CAS  PubMed  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  PubMed  Google Scholar 

  • de Morais MG, Costa JAV (2007a) Carbon dioxide fixation by Chlorella kessleri, C. vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical tubular photobioreactors. Biotechnol Lett 29:1349–1352

    Article  CAS  PubMed  Google Scholar 

  • de Morais MG, Costa JAV (2007b) Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide. Energ Convers Manag 48:2169–2673

    Article  Google Scholar 

  • de Morais MG, Costa JAV (2007c) Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. J Biotechnol 129:439–445

    Article  PubMed  Google Scholar 

  • Dickson LG, Galloway RA, Patterson GW (1969) Environmentally-induced changes in the fatty acids of Chlorella. Plant Physiol 44:1413–1416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Nabarawy MT, Welter AN (1984) Utilization of algal cultures and assays by industry. In: Shubert LE (ed) Algae as ecological indicators. Academic Press, London, pp 317–328

    Google Scholar 

  • Kim MK, Park JW, Park CS, Kim SJ, Jeune KH, Chang MU, Acreman J (2007) Enhanced production of Scenedesmus spp. (green microalgae) using a new medium containing fermented swine wastewater. Biores Technol 98:2220–2228

    Article  CAS  Google Scholar 

  • Lee Y-K, Ding S-Y, Hoe C-H, Low C-S (1996) Mixotrophic growth of Chlorella sorokiniana in outdoor enclosed photobioreactor. J Appl Phycol 8:163–169

    Article  Google Scholar 

  • Mahadevaswamy M, Venkataraman LV (1986) Bioconversion of poultry droppings for biogas and algal production. Agricul Wastes 18:93–101

    Article  CAS  Google Scholar 

  • Mandal S, Mallick N (2011) Waste utilization and biodiesel production by the green microalga Scenedesmus obliquus. Appl Environ Microbiol 77:374–377

    Article  CAS  PubMed  Google Scholar 

  • Mulbry W, Kondrad S, Pizarro C, Kebede-Westhead E (2008) Treatment of dairy manure effluent using freshwater algae: algal productivity and recovery of manure nutrients using pilot-scale algal turf scrubbers. Biores Technol 99:8137–8142

    Article  CAS  Google Scholar 

  • Olguín EJ, Galicia S, Mercado G, Perez T (2003) Annual productivity of Spirulina (Arthrospira) and nutrient removal in a pig wastewater recycle process under tropical conditions. J Appl Phycol 15:249–257

    Article  Google Scholar 

  • Oswald WJ (1973) Productivity of algae in sewage disposal. Sol Energy 15:107–117

    Article  CAS  Google Scholar 

  • Pizarro C, Mulbry W, Blersch D, Kangas P (2006) An economic assessment of algal turf scrubber technology for treatment of dairy manure effluent. Ecol Eng 26:321–327

    Article  Google Scholar 

  • Rai LC, Mallick N, Singh JB, Kumar HD (1991) Physiological and biochemical characteristics of a copper tolerant and a wild type strain of Anabaena doliolum under copper stress. J Plant Physiol 138:68–74

    Article  CAS  Google Scholar 

  • Ramanan R, Kannan K, Deshkar A, Yadav R, Chakrabarti T (2010) Enhanced algal CO2 sequestration through calcite deposition by Chlorella sp. and Spirulina platensis in a mini-raceway pond. Biores Technol 101:2616–2622

    Article  CAS  Google Scholar 

  • Riis V, Mai W (1988) Gas chromatographic determination of poly-β-hydroxybutyric acid in microbial biomass after hydrochloric acid propanolysis. J Chromatogr 445:285–289

    Article  CAS  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  • Samantaray S, Mallick N (2012) Production and characterization of poly-β-hydroxybutyrate (PHB) polymer from Aulosira fertilissima. J Appl Phycol 24:803–814

    Article  CAS  Google Scholar 

  • Samantaray S, Mallick N (2014) Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) co-polymer by the diazotrophic cyanobacterium Aulosira fertilissima CCC 444. J Appl Phycol 26:237–245

    Article  CAS  Google Scholar 

  • Samantaray S, Mallick N (2015) Role of cultural variables in tailoring poly(3- hydroxybutyrate-co-3-hydroxyvalerate) co-polymer synthesis in the diazotrophic cyanobacterium Aulosira fertilissima CCC 444. J Appl Phycol 27:197–203

    Article  CAS  Google Scholar 

  • Slater S, Gallaher T, Dennis D (1992) Production of poly-(3-hydroxybutyrate-co-3- hydroxyvalerate) in a recombinant Escherichia coli strain. Appl Environ Microbiol 58:1089–1094

    CAS  PubMed  PubMed Central  Google Scholar 

  • Straub CP (1989) Practical handbook of environmental control. CRC Press, Boca Raton, 537p

    Google Scholar 

  • Syiem MB, Singh AK, Rai AN, Khumanthem N, Singh RS, Adhikari S, Bhattacharjee A (2007) Nitrogen metabolism, artificial association study in two cyanobacterial isolates and assessment of their potential as biofertilizer. Indian J Biotechnol 6:397–403

    CAS  Google Scholar 

  • Tang D, Han W, Li P, Miao X, Zhong J (2011) CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Biores Technol 102:3071–3076

    Article  CAS  Google Scholar 

  • Wang B, Li Y, Wu N, Lan QC (2008) CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol 79:707–718

    Article  CAS  PubMed  Google Scholar 

  • Wilkie AC, Mulbry WW (2002) Recovery of dairy manure nutrients by benthic freshwater algae. Biores Technol 84:81–91

    Article  CAS  Google Scholar 

  • Yellore V, Desia A (1998) Production of poly-β-hydroxybutyrate from lactose and whey by Methylobacterium sp. ZP24. Lett Appl Microbiol 26:391–394

    Article  CAS  PubMed  Google Scholar 

  • Yongmanitchai W, Ward OP (1991) Growth of and omega-3 fatty acid production by Phaeodactylum tricornutum under different culture conditions. Appl Environ Microbiol 57:419–425

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yun YS, Lee SB, Park JM, Lee CI, Yang JW (1997) Carbon dioxide fixation by algae cultivation using wastewater nutrients. J Chem Technol Biotechnol 69:451–455

    Article  CAS  Google Scholar 

  • Zhao B, Zhang Y, Xiong K, Zhang Z, Hao X, Liu T (2011) Effect of cultivation mode on microalgal growth and CO2 fixation. Chem Eng Res Des 89:1758–1762

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Council of Scientific and Industrial Research (CSIR), Govt. of India, New Delhi, India is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nirupama Mallick.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhati, R., Mallick, N. Carbon dioxide and poultry waste utilization for production of polyhydroxyalkanoate biopolymers by Nostoc muscorum Agardh: a sustainable approach. J Appl Phycol 28, 161–168 (2016). https://doi.org/10.1007/s10811-015-0573-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-015-0573-x

Keywords