Skip to main content

Optimization of environmental parameters for Nannochloropsis salina growth and lipid content using the response surface method and invading organisms

Abstract

Algae biofuel has the potential to replace fossil fuels. However, cultivation and productivity of target algae need improvement, while controlling undesired organisms that can lower the efficiency of production systems. A central composite design and response surface model were utilized to predict cultivation optima of marine microalga, Nannochloropsis salina, under a suite of environmental parameters. The effects of salinity, pH, and temperature and their interactions were studied on maximum sustainable yield (MSY, a measure for biomass productivity), lipid content of N. salina, and invading organisms. Five different levels of each environmental predictor variable were tested. The environmental factors were kept within ranges that had previously been determined to allow positive N. salina growth (14.5–45.5 PSU; pH 6.3–9.7; 11–29 °C). The models created for this experiment showed that N. salina’s MSY and lipid content are not strongly affected over the broad range of salinity and temperature values. Calculated optima levels were 28 PSU/20 °C for MSY and 14.5 PSU/20 °C for lipid accumulation, but neither value significantly influenced the model. However, pH was the most important factor to influence algae productivity, and pH optimum was estimated around 8. Both MSY and lipid content were strongly reduced when pH deviated from the optimum. Occurrence of invading organisms seemed stochastic, and none of the environmental factors studied significantly influenced abundance. In conclusion, pH should be kept around 8 for maximum productivity of N. salina. Temperature and salinity should be kept around 20 °C and 28 PSU; however, moderate variations are not too much of a concern and might enhance lipid content of N. salina.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Abu-Rezq TS, Al-Musallam L, Al-Shimmari J, Dias P (1999) Optimum production conditions for different high-quality marine algae. Hydrobiologia 403:97–107

    Article  Google Scholar 

  2. Bartley ML, Boeing WJ, Corcoran AA, Holguin FO, Schaub T (2013) Effects of salinity on growth and lipid accumulation of biofuel microalga Nannochloropsis salina and invading organisms. Biomass Bioenergy 54:83–88

    CAS  Article  Google Scholar 

  3. Bartley ML, Boeing WJ, Dugan BN, Holguin FO, Schaub T (2014) pH effects on growth and lipid accumulation of the biofuel microalgae Nannochloropsis salina and invading organisms. J Appl Phycol 26:1431–1437

    CAS  Article  Google Scholar 

  4. Becker EW (1994) Microalgae biotechnology and microbiology. Cambridge University Press, Cambridge, pp 128–142

    Google Scholar 

  5. Bigelow NW, Hardin WR, Barker JP, Ryken SA, MacRae AC, Cattolico RA (2011) A comprehensive GC-MS sub-microscale assay for fatty acids and its applications. J Am Oil Chem Soc 88:1329–1338

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Borowitzka MA (1998) Limits to growth. In: Wong YS, Tam NFY (eds) Wastewater treatment with algae. Springer, Berlin, pp 203–218

    Chapter  Google Scholar 

  7. Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14:557–577

    CAS  Article  Google Scholar 

  8. Brown MR, Garland CD, Jeffrey SW, Jameson ID, Leroi JM (1993) The gross and amino acid compositions of batch and semi-continuous cultures of Isochrysis sp. (clone T. ISO), Pavlova lutheri and Nannochloropsis oculata. J Appl Phycol 5:285–296

    CAS  Article  Google Scholar 

  9. Campos H, Boeing WJ, Dungan BN (2014) Cultivating the marine microalgae Nannochloropsis salina under various nitrogen sources: effect on biovolume yields, lipid content and composition, and invasive organisms. Biomass Bioenergy 66:301–307

    CAS  Article  Google Scholar 

  10. Chen CY, Durbin EG (1994) Effects of pH on the growth and carbon uptake of marine phytoplankton. Mar Ecol Prog Ser 109:83–94

    Article  Google Scholar 

  11. Chen M, Tang H, Ma H, Holland TC, Ng KS, Salley SO (2011) Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta. Bioresource Technol 102:1649–1655

    CAS  Article  Google Scholar 

  12. Cheng-Wu Z, Zmora O, Kopel R, Richmond A (2001) An industrial-size flat plate glass reactor for mass production of Nannochloropsis sp. (Eustigmatophyceae). Aquaculture 195:35–49

    CAS  Article  Google Scholar 

  13. Chi Z, Lui Y, Frear C, Shulin C (2009) Study of a two-stage growth of DHA-producing marine algae Schizochytrium limacinum SR21 with shifting dissolved oxygen level. Appl Microbiol Biotechnol 81:1141–1148

    CAS  Article  PubMed  Google Scholar 

  14. Chisti Y (2007) Biodiesel from microalgae. BiotechnolAdv 25:294–306

    CAS  Google Scholar 

  15. Clavero E, Hernández-Mariné M, Grimalt JO, Garcia-Pichel F (2008) Salinity tolerance of diatoms from thalassic hypersaline environments. J Phycol 36:1021–1034

    Article  Google Scholar 

  16. Doan TTY, Sivaloganathan B, Obbard JP (2011) Screening of marine microalgae for biodiesel feedstock. Biomass Bioenergy 35:2534–2544

    CAS  Article  Google Scholar 

  17. Griffiths MJ, van Hille RP, Harrison ST (2010) Selection of direct transesterification as the preferred method for assays of fatty acid content of microalgae. Lipids 45:1053–1060

    CAS  Article  PubMed  Google Scholar 

  18. Guillard RRL, Rhyther JH (1962) Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can J Microbiol 8:229–239

    CAS  Article  PubMed  Google Scholar 

  19. Hill PS, Tripati AK, Schauble EA (2014) Theoretical constraints on the effects of pH, salinity, and temperature on clumped isotope signatures of inorganic carbon species and precipitating carbonate minerals. Geochim Cosmochim Acta 125:610–652

    CAS  Article  Google Scholar 

  20. Hu H, Gao K (2006) Response of growth and fatty acid compositions of Nannochloropsis sp. to environmental factors under elevated CO2 concentration. Biotechnol Lett 28:987–992

    CAS  Article  PubMed  Google Scholar 

  21. Inouye BD (2001) Response surface experimental design for investigating interspecific competition. Ecology 82:2696–2706

    Article  Google Scholar 

  22. Laurens LML, Quinn M, Van Wychen S, Templeton DW, Wolfrum EJ (2012) Accurate and reliable quantification of total microalgae fuel potential as fatty acid methyl esters by in situ transesterification. Anal Bioanal Chem 403:167–178

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Ma J, Lu N, Qin W, Xu R, Wang Y, Chen X (2006) Differential responses of eight cyanobacterial and green algal species, to carbamate insecticides. Ecotox Environ Safe 62:268–274

    Article  Google Scholar 

  24. Mata TM, Martins A, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232

    CAS  Article  Google Scholar 

  25. Moazami N, Ashori A, Ranjbar R, Tangestani M, Eghtesadi R, Nejad AS (2012) Large-scale biodiesel production using microalgae biomass of Nannochloropsis. Biomass Bioenergy 39:449–453

    CAS  Article  Google Scholar 

  26. Moheimani NR, Borowitzka MA (2011) Increased CO2 and the effect of pH on growth and calcification of Pleurochrysis carterae and Emiliania huxleyi (Haptophyta) in semicontinuous cultures. Appl Microbiol Biot 90:1399–1407

    CAS  Article  Google Scholar 

  27. Neter J, Kutner M, Nachtsheim C, Wasserman W (2004) Applied linear regression models—4th edition. McGraw-Hill

  28. Patil P, Reddy H, Muppaneni T, Mannarswamy A, Holguin O, Schaub T, Nirmalakhandan N, Cooke P, Deng S (2012) Power dissipation in microwave-enhanced in-situ transesterification of algal biomass to biodiesel. Green Chem 14:809–818

    CAS  Article  Google Scholar 

  29. R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  30. Rebolloso-Fuentes MM, Navarro-Perez A, Garćia-Camacho F, Ramos-Miras JJ, Guil-Guerrero JL (2001) Biomass nutrient profiles of the microalga Nannochloropsis. J Agric Food Chem 49:2966–2972

    CAS  Article  PubMed  Google Scholar 

  31. Renaud SM, Parry DL (1994) Microalgae for use in tropical aquaculture II: Effect of salinity on growth, gross chemical composition and fatty acid composition of three species of marine microalgae. J Appl Phycol 6:347–356

    CAS  Article  Google Scholar 

  32. Richmond A, Cheng-Wu Z (2001) Optimization of a flat plate glass reactor for mass production of Nannochloropsis sp. outdoors. J Biotechnol 85:259–269

    CAS  Article  PubMed  Google Scholar 

  33. Rocha J, Garcia JEC, Henriques MHF (2003) Growth aspects of the marine microalga Nannochloropsis gaditana. Biomol Eng 20:237–242

    CAS  Article  PubMed  Google Scholar 

  34. Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112

    CAS  Article  PubMed  Google Scholar 

  35. Roessler PG (1990) Environmental control of glycerolipid metabolism in microalgae: commercial implications and future research directions. J Phycol 26:393–399

    CAS  Article  Google Scholar 

  36. Sforza E, Bertucco A, Morosinotto T, Giacometti GM (2012) Photobioreactors for microalgal growth and oil production with Nannochloropsis salina: from lab-scale experiments to large-scale design. Chem Eng Res Des 90:1151–1158

    CAS  Article  Google Scholar 

  37. Søgaard DH, Hansen PJ, Rysgaard S, Glud RN (2011) Growth limitation and three Arctic sea ice algal species: effects of salinity, pH, and inorganic carbon availability. Polar Biol 34:1157–1165

    Article  Google Scholar 

  38. Sommer U, Gliwicz ZM, Lampert W, Duncan A (1986) The PEG model of a seasonal succession of planktonic events in fresh waters. Arch Hydrobiol 106:433–471

    Google Scholar 

  39. Sporalore P, Joannis-Cassan C, Duran E, Isambert A (2006) Optimization of Nannochloropsis oculata growth using the response surface method. J Chem Technol Biotechnol 81:1049–1056

    Article  Google Scholar 

  40. Sukenik A, Zmora O, Carmeli Y (1993) Biochemical quality of marine unicellular algae with special emphasis on lipid composition. II Nannochloropsis sp. Aquaculture 117:313–326

    CAS  Article  Google Scholar 

  41. Van Wagenen J, Miller TW, Hobbs S, Hook P, Crowe B, Huesemann M (2012) Effects of light and temperature on fatty acid production in Nannochloropsis salina. Energies 5:731–740

    Article  Google Scholar 

  42. Xu Y, Boeing WJ (2014) Modeling maximum lipid productivity of microalgae: review and next step. Renew Sust Energ Rev 32:29–39

    CAS  Article  Google Scholar 

  43. Zittelli GC, Pastorelli R, Tredici MR (2000) A modular flat panel photobioreactor (MFPP) for indoor mass cultivation of Nannochloropsis sp. under artificial illumination. J Appl Phycol 12:521–526

  44. Zittelli GC, Rodolfi L, Tredici MR (2003) Mass cultivation of Nannochloropsis sp. in annular reactors. J Appl Phycol 15:107–114

Download references

Acknowledgments

We are grateful for the valuable work from the following undergraduate students: Herman Campos, Levi Chavez, Renee Pardee, Herberto Chaparro, and Zach Brecheisen. Neeshia Macanowicz was vital to the design and construction of the temperature control system. Darren James provided valuable help with statistical analyses for this research. This work is supported by the US Department of Energy under contract DE-EE0003046 awarded to the National Alliance for Advanced Biofuels and Bioproducts and by the Center for Animal Health, Food Safety and Biosecurity at New Mexico State University. This is a New Mexico Agricultural Experiment Station publication, supported by state funds and the US Hatch Act.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wiebke J. Boeing.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bartley, M.L., Boeing, W.J., Daniel, D. et al. Optimization of environmental parameters for Nannochloropsis salina growth and lipid content using the response surface method and invading organisms. J Appl Phycol 28, 15–24 (2016). https://doi.org/10.1007/s10811-015-0567-8

Download citation

Keywords

  • Algae density
  • Lipid productivity
  • Environmental factors
  • Biodiesel fuel
  • Invasive organisms
  • Response surface model