Journal of Applied Phycology

, Volume 28, Issue 1, pp 241–250 | Cite as

The effect of saxitoxin and non-saxitoxin extracts of Cylindrospermopsis raciborskii (Cyanobacteria) on cyanobacteria and green microalgae

  • Maria do Carmo Bittencourt-OliveiraEmail author
  • Mathias Ahii Chia
  • Danilo Camargo-Santos
  • Carlos T. S. Dias


The effect of saxitoxins (STX) on phytoplankton species is poorly understood. To date, no correlation between STX concentrations and phytoplankton physiology has been reported. We investigated the effect of STX (STX+, 0.5–10 μg L 1 total STX) and non-STX (STX−, 0.5–10 μg L 1 total STX biomass equivalent) extracts of Cylindrospermopsis raciborskii on Microcystis wesenbergii BCCUSP11, Microcystis aeruginosa BCCUSP232 (microcystin producing), Scenedesmus acuminatus UFSCar036, and Monoraphidium convolutum CMEA/UFF0201 under controlled laboratory conditions. Both STX+ and STX− extracts inhibited the cell density and specific growth rate of M. wesenbergii, M. aeruginosa, and S. acuminatus. However, the effect of STX+ extract on the phytoplankton strains was significantly higher than that of STX− extract. M. convolutum, on the other hand, was tolerant as both STX+ and STX− extracts did not significantly reduce its cell density and specific growth rate (day−1). The exposure of M. aeruginosa to STX+ and STX− resulted in higher total (intracellular and extracellular) microcystin concentration than the control. STX concentrations had a significant negative correlation with cell density and growth response of the phytoplankton strains investigated in this study. Conclusions can be made that although both STX+ and STX− extracts of C. raciborskii inhibited the growth of some phytoplankton species, the STX+ extracts were more toxic.


Growth inhibition Cyanotoxins Phytoplankton dc-Saxitoxin Neo-saxitoxin Microcystins 



This research was supported by grants 2011/50840-0 and 2011/02957-5 from the São Paulo Research Foundation (FAPESP) and 301739/2011-0 from the National Council of Technological and Scientific Development (CNPq) to M.C. Bittencourt-Oliveira. M.A. Chia acknowledges the postdoctoral fellowship (Grant No. 2013/11306-3) granted by the São Paulo Research Foundation (FAPESP).


  1. Acs A, Kovács AW, Csepregi JZ, Toro N, Kiss G, Gyori J, Vehovszky A, Kovats N, Farkas A (2013) The ecotoxicological evaluation of Cylindrospermopsis raciborskii from Lake Balaton (Hungary) employing a battery of bioassays and chemical screening. Toxicon 70:98–106Google Scholar
  2. Al-Tebrineh J, Mihali TK, Pomati F, Neilan BA (2010) Detection of saxitoxin-producing cyanobacteria and Anabaena circinalis in environmental water blooms by qualitative PCR. Appl Environ Microbiol 76:7836–7842CrossRefPubMedPubMedCentralGoogle Scholar
  3. Babica P, Hilscherová K, Bártová K, Bláha L, Maršalék B (2007) Effects of dissolved microcystins on growth of planktonic photoautotrophs. Phycologia 46:137–142CrossRefGoogle Scholar
  4. Bártová K, Hilscherová K, Babica P, Maršálek B, Bláha L (2011) Effects of microcystin and complex cyanobacterial samples on the growth and oxidative stress parameters in green alga Pseudokirchneriella subcapitata and comparison with the model oxidative stressor—herbicide paraquat. Environ Toxicol 26:641–648Google Scholar
  5. Bar-Yosef Y, Sukenik A, Hadas O, Viner-Mozzini Y, Kaplan A (2010) Enslavement in the water body by toxic Aphanizomenon ovalisporum, inducing alkaline phosphatase in phytoplanktons. Curr Biol 20:1557–1561Google Scholar
  6. Bernard C, Harvey M, Briand JF, Biré R, Krys S, Fontaine JJ (2003) Toxicological comparison of diverse Cylindrospermopsis raciborskii strain: evidence of liver damage caused by a French C. raciborskii strain. Environ Toxicol 18:176–186CrossRefPubMedGoogle Scholar
  7. Bittencourt-Oliveira MC (2003) Detection of potential microcystin-producing cyanobacteria in Brazilian reservoirs with a mcyB molecular marker. Harmful Algae 2:51–60CrossRefGoogle Scholar
  8. Bittencourt-Oliveira MC, Oliveira MC, Pinto E (2011) Diversity of microcystin-producing genotypes in Brazilian strains of Microcystis (Cyanobacteria). Braz J Biol 71:209–216CrossRefPubMedGoogle Scholar
  9. Bittencourt-Oliveira MC, Chia AM, Oliveira HSB, Cordeiro-Araújo MK, Molica RJR, Dias CTS (2015) Allelopathic interactions between microcystin-producing and non-microcystin-producing cyanobacteria and green microalgae: implications for microcystins production. J Appl Phycol 27:275–284Google Scholar
  10. Bouvy M, Molica R, de Oliveira S, Marinho M, Beker B (1999) Dynamics of a toxic cyanobacterial bloom (Cylindrospermopsis raciborskii) in a shallow reservoir in the semi-arid region of northeast Brazil. Aquat Microb Ecol 20:285–297CrossRefGoogle Scholar
  11. Bouvy M, Ba N, Ka S, Sane S, Pagano M, Arfí R (2006) Phytoplankton community structure and species assemblage succession in a shallow tropical lake (Lake Guiers, Senegal). Aquat Microb Ecol 45:147–161CrossRefGoogle Scholar
  12. Campos A, Araújo P, Pinheiro C, Azevedo J, Osório H, Vasconcelos V (2013) Effect on growth, antioxidant enzyme activity and levels of extracellular proteins in the green alga Chlorella vulgaris exposed to crude cyanobacterial extracts and pure microcystin and cylindrospermopsin. Ecotoxicol Environ Saf 94:45–53CrossRefPubMedGoogle Scholar
  13. Carneiro RL, Pacheco ABF, Azevedo SMFO (2013) Growth and saxitoxin production by Cylindrospermopsis raciborskii (Cyanobacteria) correlate with water hardness. Mar Drugs 11:2949–2963CrossRefPubMedPubMedCentralGoogle Scholar
  14. Chia AM, Abolude DS, Ladan Z, Akanbi O, Kalaboms A (2009a) The presence of microcystins in aquatic ecosystems in Northern Nigeria: Zaria as a case study. Res J Environ Toxicol 3:170–178CrossRefGoogle Scholar
  15. Chia AM, Oniye SJ, Ladan Z, Lado Z, Pila EA, Inekwe VU, Mmerole JU (2009b) A survey for the presence of microcystins in aquaculture ponds in Zaria, Northern-Nigeria: possible public health implication. Afr J Biotechnol 8:6282–6289CrossRefGoogle Scholar
  16. Chia AM, Adelanwa MA, Ladan Z, Iortsuun DN, Adanyi SE, Stephen BJ (2012) Interactions of Ipomoea aquatica and Utricularia reflexa with phytoplankton densities in a small water body in northern Nigeria. Oceanol Hydrobiol Stud 41:39–47CrossRefGoogle Scholar
  17. Cordeiro-Araújo MK, Bittencourt-Oliveira MC (2013) Active release of microcystins controlled by an endogenous rhythm in the cyanobacterium Microcystis aeruginosa. Phycol Res 61:1–6CrossRefGoogle Scholar
  18. Costa SM, Ferrão-Filho AS, Azevedo SMFO (2013) Effects of saxitoxin- and non-saxitoxin-producing strains of the cyanobacterium Cylindrospermopsis raciborskii on the fitness of temperate and tropical cladocerans. Harmful Algae 28:55–63CrossRefGoogle Scholar
  19. Deblois CP, Juneau P (2010) Relationship between photosynthetic processes and microcystin in Microcystis aeruginosa grown under different photon irradiances. Harmful Algae 9:18–24CrossRefGoogle Scholar
  20. Downing TG, Meyer C, Gehringer MM, Van de Venter M (2005) Microcystin content of Microcystis aeruginosa is modulated by nitrogen uptake rate relative to specific growth rate or carbon fixation rate. Environ Toxicol 20:257–262CrossRefPubMedGoogle Scholar
  21. Dunker S, Jakob T, Wilhelm C (2013) Contrasting effects of the cyanobacterium Microcystis aeruginosa on the growth and physiology of two green algae, Oocystis marsonii and Scenedesmus obliquus, revealed by flow cytometry. Freshw Biol 58:1573–1587CrossRefGoogle Scholar
  22. Figueredo CC, Giani A, Bird DF (2007) Does allelopathy contribute to Cylindrospermopsis raciborskii (Cyanobacteria) bloom occurrence and geographic expansion? J Phycol 43:256–265CrossRefGoogle Scholar
  23. Fistarol GO, Legrand C, Selander E, Hummert C, Stolte W, Granéli E (2004) Allelopathy in Alexandrium spp.: effect on a natural plankton community and on algal monocultures. Aquat Microb Ecol 35:45–56CrossRefGoogle Scholar
  24. Gan N, Xiao Y, Zhu L, Wu Z, Liu J, Hu C, Song L (2012) The role of microcystins in maintaining colonies of bloom-forming Microcystis spp. Environ Microbiol 14:730–742CrossRefPubMedGoogle Scholar
  25. Guillard RRL (1973) Division rates. In: Stein J (ed) Handbook of phycological methods: culture methods and growth measurements. Cambridge University Press, Cambridge, pp 289–311Google Scholar
  26. Hattenrath-Lehmann TK, Gobler CJ (2011) Allelopathic inhibition of competing phytoplankton by North American strains of the toxic dinoflagellate, Alexandrium fundyense: evidence from field experiments, laboratory experiments, and bloom events. Harmful Algae 11:106–116CrossRefGoogle Scholar
  27. Hoff-Risseti C, Dörr FA, Schaker PDC, Pinto E, Werner VR, Fiore MF (2013) Cylindrospermopsin and saxitoxin synthetase genes in Cylindrospermopsis raciborskii strains from Brazilian freshwater. Plos One 8(8):e74238CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kaplan A, Harel M, Kaplan-Levy RN, Hadas O, Sukenik A, Dittmann E (2012) The languages spoken in the water body (or the biological role of cyanobacterial toxins). Front Microbiol 3:138CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kling HJ (2009) Cylindrospermopsis raciborskii (Nostocales, Cyanobacteria): a brief historic overview and recent discovery in the Assiniboine River (Canada). Fottea 9:45–47Google Scholar
  30. Kokociński M, Stefaniak K, Mankiewicz-Boczek J, Izydorczyk K, Soininen J (2010) The ecology of the invasive Cylindrospermopsis raciborskii (Nostocales, Cyanophyta) in two hypereutrophic lakes dominated by Planktothrix agardhiii (Oscillatoriales, Cyanophyta). Eur J Phycol 45:365–374CrossRefGoogle Scholar
  31. Lagos N, Onodera H, Zagatto PA, Andrinolo D, Azevedo SMFO, Oshima Y (1999) The first evidence of paralytic shellfish toxins in the freshwater cyanobacterium Cylindrospermopsis raciborskii, isolated from Brazil. Toxicon 37:1359–1373CrossRefPubMedGoogle Scholar
  32. Landsberg J (2002) The effects of harmful algal blooms on aquatic organisms. Rev Fish Sci 10:113–390CrossRefGoogle Scholar
  33. Leão PN, Vasconcelos MTSD, Vasconcelos VM (2009) Allelopathic activity of cyanobacteria on green algae at low densities. Eur J Phycol 44:347–355CrossRefGoogle Scholar
  34. Lund JWG, Kipling C, Le Cren ED (1958) The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11:143–170CrossRefGoogle Scholar
  35. Melegari SP, Perreault F, Moukha S, Popovic R, Creppy EE, Matias WG (2012) Induction to oxidative stress by saxitoxin investigated through lipid peroxidation in Neuro 2A cells and Chlamydomonas reinhardtii alga. Chemosphere 89:38–43CrossRefPubMedGoogle Scholar
  36. Mello MME, Soares MCS, Roland F, Lürling M (2012) Growth inhibition and colony formation in the cyanobacterium Microcystis aeruginosa induced by the cyanobacterium Cylindrospermopsis raciborskii. J Plankton Res 34:987–994CrossRefGoogle Scholar
  37. Molica R, Onodera H, García C, Rivas M, Andrinolo D, Nascimento S, Meguro H, Oshima Y, Azevedo S, Lagos N (2002) Toxins in the freshwater cyanobacterium Cylindrospermopsis raciborskii (Cyanophyceae) isolated from Tabocas reservoir in Caruaru, Brazil, including demonstration of a new saxitoxin analogue. Phycologia 41:606–611CrossRefGoogle Scholar
  38. Moustaka-Gouni M, Vardaka E, Tryfon E (2007) Phytoplankton species succession in a shallow Mediterranean lake (L. Kastoria, Greece): steady-state dominance of Limnothrix redekei, Microcystis aeruginosa and Cylindrospermopsis raciborskii. Hydrobiologia 575:129–140CrossRefGoogle Scholar
  39. Neilan BA, Pearson LA, Muenchhoff J, Moffitt MC, Dittmann E (2013) Environmental conditions that influence toxin biosynthesis in cyanobacteria. Environ Microbiol 15:1239–1253CrossRefPubMedGoogle Scholar
  40. Orr PT, Jones GJ (1998) Relationship between microcystin production and cell division rates in nitrogen-limited Microcystis aeruginosa cultures. Limnol Oceanogr 43:1604–1614CrossRefGoogle Scholar
  41. Oshima Y (1995) Postcolumn derivatization liquid-chromatographic method for paralytic shellfish toxins. J AOAC Int 78:528–532Google Scholar
  42. Perreault F, Matias MS, Melegari SP, Pinto CRSC, Creppy EK, Popovic R, Matias WG (2011) Investigation of animal and algal bioassays for reliable saxitoxin ecotoxicity and cytotoxicity risk evaluation. Ecotoxicol Environ Saf 74:1021–1026CrossRefPubMedGoogle Scholar
  43. Pineda-Mendoza RM, Zúñiga G, Martínez-Jerónimo F (2014) Infochemicals released by Daphnia magna fed on Microcystis aeruginosa affect mcyA gene expression. Toxicon 80:78–86CrossRefPubMedGoogle Scholar
  44. Poniedzialek B, Rzymski P, Kokocinski M, Karczewski J. (2015). Toxic potencies of metabolite (s) of non-cylindrospermopsin producing Cylindrospermopsis raciborskii isolated from temperate zone in human white cells. Chemosphere 120:608–614Google Scholar
  45. Rzymski P, Poniedzialek B (2014) In search of environmental role of cylindrospermopsin: a review on global distribution and ecology of its producers. Water Res 66:320–337CrossRefPubMedGoogle Scholar
  46. Rzymski P, Poniedzialek B, Kokociński M, Jurczak T, Lipski D, Wiktorowicz K (2014) Interspecific allelopathy in cyanobacteria: cylindrospermopsin and Cylindrospermopsis raciborskii effect on the growth and metabolism of Microcystis aeruginosa. Harmful Algae 35:1–8CrossRefGoogle Scholar
  47. Schatz D, Keren Y, Vardi A, Sukenik A, Carmeli S, Borner T, Dittmann E, Kaplan A (2007) Towards clarification of the biological role of microcystins, a family of cyanobacterial toxins. Environ Microbiol 9:965–970CrossRefPubMedGoogle Scholar
  48. Suikkanen S, Fistarol GO, Graneli E (2004) Allelopathic effects of the Baltic cyanobacteria Nodularia spumigena, Aphanizomenon flos-aquae and Anabaena lemmermannii on algal monocultures. J Exp Mar Biol Ecol 308:85–101CrossRefGoogle Scholar
  49. Sukenik A, Hadas O, Kaplan A, Quesada A (2012) Invasion of Nostocales (cyanobacteria) to subtropical and temperate freshwater lakes—physiological, regional, and global driving forces. Front Microbiol 3:86CrossRefPubMedPubMedCentralGoogle Scholar
  50. Taylor AR (2009) A fast Na+/Ca2+-based action potential in a marine diatom. PLoS One 4(3):e4966CrossRefPubMedPubMedCentralGoogle Scholar
  51. Tillmann U, John U (2002) Toxic effects of Alexandrium spp. on heterotrophic dinoflagellates: an allelochemical defence mechanism independent of PSP-toxin content. Mar Ecol Prog Ser 230:47–58CrossRefGoogle Scholar
  52. Tillmann U, Tilman A, John U, Cembella A (2008) Allelochemical interactions and short-term effects of the dinoflagellate Alexandrium on selected photoautotrophic and heterotrophic protists. Harmful Algae 7:52–64CrossRefGoogle Scholar
  53. Van Gremberghe I, Vanormelingen P, van der Gucht K, Mancheva A, D’Hont S, de Meester L, Vyverman W (2009) Influence of Daphnia infochemicals on functional traits of Microcystis strains (cyanobacteria). Hydrobiologia 635:147–155CrossRefGoogle Scholar
  54. Velzeboer RMA, Baker PD, Rositano J, Heresztyn T, Codd GA, Raggett SL (2000) Geographical patterns of occurrence and composition of saxitoxins in the cyanobacterial genus Anabaena (Nostocales, Cyanophyta) in Australia. Phycologia 39:395–407CrossRefGoogle Scholar
  55. Wheeler GL, Brownlee C (2008) Ca2+ signalling in plants and green algae—changing channels. Trends Plant Sci 13:506–514CrossRefPubMedGoogle Scholar
  56. Wiegand C, Pflugmacher S (2005) Ecotoxicological effects of selected cyanobacterial secondary metabolites: a short review. Toxicol Appl Pharmacol 204:201–218CrossRefGoogle Scholar
  57. Wilken S, Wiezer S, Huisman J, van Donk E (2010) Microcystins do not provide anti-herbivore defence against mixotrophic flagellates. Aquat Microb Ecol 59:207–216CrossRefGoogle Scholar
  58. Zalocar de Domitrovic Y, Poi de Neiff ASG, Casco SL (2007) Abundance and diversity of phytoplankton in the Paraná River (Argentina) 220 km downstream the Yacyretá reservoir. Braz J Biol 67:53–63CrossRefPubMedGoogle Scholar
  59. Zhang P, Zhai C, Wang X, Liu C, Jiang J, Xue Y (2013) Growth competition between Microcystis aeruginosa and Quadrigula chodatii under controlled conditions. J Appl Phycol 25:555–565CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Maria do Carmo Bittencourt-Oliveira
    • 1
    Email author
  • Mathias Ahii Chia
    • 1
  • Danilo Camargo-Santos
    • 1
    • 2
  • Carlos T. S. Dias
    • 3
  1. 1.Department of Biological Sciences, Luiz de Queiroz College of AgricultureUniversity of São PauloPiracicabaBrazil
  2. 2.Institute of Biological SciencesSão Paulo State UniversityRio ClaroBrazil
  3. 3.Department of Exact Sciences, Luiz de Queiroz College of AgricultureUniversity of São PauloPiracicabaBrazil

Personalised recommendations