Journal of Applied Phycology

, Volume 27, Issue 4, pp 1385–1387 | Cite as

Regulation of the initial events in microalgal triacylglycerol (TAG) synthesis: hypotheses

  • Keith E. CookseyEmail author


Possible scenarios for the regulation of the early events in triacylglycerol accumulation by microalgae are discussed. It is hypothesized that buildup of α-ketoglutarate (α-KG) in the cell as a result of nitrogen limitation is involved in the stimulation of the first events in fatty acid synthesis. It is proposed that only cells unable to complete a cell cycle will accumulate lipid.


Triacylglycerol Regulation Microalgae Tricarboxylic acid cycle Cell cycle α-Ketoglutarate Allostery 


  1. Benning C (2014) Regulation of lipid metabolism in microalgae. Abstract, 4th Int Conf Algal Biomass, Biofuels and Bioproducts, Santa Fe, NM, USAGoogle Scholar
  2. Biller P, Ross AB, Skill SC, Lea-Langton A, Balasundaram B, Hall C, Riley R, Llewellyn CA (2012) Nutrient re-cycling of aqueous phase for microalgae cultivation from the hydrothermal liquefaction process. Algal Res 1:70–76CrossRefGoogle Scholar
  3. Bowler C, Allen AE, Badger JH et al (2008) The Phaeodactylum genome reveals evolutionary history of the diatom genome. Nature 456:230–244CrossRefGoogle Scholar
  4. Breuer G, Lamers P, Martens D, Draaisma R, Wijffels R (2012) The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains. Biores Tech 124:217–226CrossRefGoogle Scholar
  5. Cooksey K (1972) The metabolism of organic acids by a marine pennate diatom. Plant Physiol 50:1–6PubMedCentralPubMedCrossRefGoogle Scholar
  6. Cooksey K (1974) Acetate metabolism by whole cells of Phaeodactylum tricornutum. J Phycol 10:253–257Google Scholar
  7. Cooksey K (2008) Regulation of TAG accumulation in microalgae: An hypothesis. Abstract, Algae Biomass Summit, Minneapolis, MN, USAGoogle Scholar
  8. Cooksey K, Guckert J, Williams S, Callis P (1987) Fluorometric determination of the neutral lipid content of microalgal cells using Nile Red. J Microbiol Methods 6:333–345CrossRefGoogle Scholar
  9. Dunahay T, Jarvis E, Dais S, Roessler P (1996) Manipulation of microalgallipid productionusing genetic engineering Appl Biochem Biotechnol 57:8223–8231Google Scholar
  10. Flechtner V, Hanson R (1969) Coarse and fine control of citrate synthase from Bacillus subtilis. Biochim Biophys Acta 184:252–262PubMedCrossRefGoogle Scholar
  11. Flynn K, Zapata M, Garrido J, Opik H, Hipkin C (1993) Changes in carbon and nitrogen physiology during ammonium and nitrate starvation in Isochrysis galbana. Eur J Phycol 28:47–52CrossRefGoogle Scholar
  12. Gardner R, Peters P, Peyton B, Cooksey K (2010) Medium pH and nitrate effects on accumulation of triacylglycerol in two members of the Chlorophyta. J Appl Phycol 23:1005–1016CrossRefGoogle Scholar
  13. Gardner R, Cooksey K, Mus F, Macur R, Moll K, Eustace E, Carlson R, Fields M, Peyton B (2012) Use of sodium bicarbonate to stimulate triacylglycerol accumulation in the chlorophyte Scenedesmus sp. and the diatom Phaeodactylum tricornutum. J Appl Phycol 24:1311–1320CrossRefGoogle Scholar
  14. Greenwell H, Laurens L, Shields R, Lovitt R, Flynn K (2010) Placing microalgae on the biofuels priority list: a review of the technological challenges. J Roy Soc Interface 7:703–726CrossRefGoogle Scholar
  15. Guarnieri M, Nag A, Smolinski S, Darzins A, Seibert M, Pienkos P (2011) Examination of triacylglycerol biosynthetic pathways via de novo transcriptomic and proteomic analyses in an unsequenced microalga. PLoS ONE 6(10):e25851PubMedCentralPubMedCrossRefGoogle Scholar
  16. Guckert J, Cooksey K (1990) Triglyceride accumulation and fatty acid profile changes in Chlorella (Chlorophyta) during high pH –induced cell cycle inhibition. J Phycol 26:72–79CrossRefGoogle Scholar
  17. Guerrra T, Levitan O, Frada M, Sun J, Falkowski P, Dismukes C (2013) Regulatory branch point affecting protein and lipid biosynthesis in the diatom Phaeodactylum tricornutum. Biomass Bioenergy 59:306–315CrossRefGoogle Scholar
  18. Hu Q, Sommerfeld M, Jarvis M, Ghiradi E, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacyglycerols as feedstocks for biofuel production; perspectives and advances. Plant J 54:621–639PubMedCrossRefGoogle Scholar
  19. James G, Hocart C, Hillier W, Chen H, Kordbaccheh F, Price G, Djordjevic M (2011) Fatty acid profiling of Chlamydomonas reinhardtii under nitrogen deprivation. Biores Tech 102:3343–3351CrossRefGoogle Scholar
  20. Kenney P, Flynn K (2014) In silico optimization for production of biomass and biofuel feed stocks from microalgae. J Appl Phycol. doi: 10.1007/s10811-014-0342-2 Google Scholar
  21. Lane J (2014) Algae: Are we there yet? Biofuels DigestGoogle Scholar
  22. Mus F, Toussaint J-P, Cooksey K, Fields M, Gerlach R, Peyton B (2013) Physiological and molecular analysis of carbon source supplementation and pH-stress induced lipid accumulation in the marine diatom Phaeodactylum tricornutum. Appl Microbiol Biotechnol 97:3625–3642PubMedCrossRefGoogle Scholar
  23. Pearce J, Leach C, Carr N (1969) The incomplete tricarboxylic acid cycle in the blue-green alga Anabaena variabilis. J Gen Microbiol 55:371–378PubMedCrossRefGoogle Scholar
  24. Peterson A, Vogel F, Lachance R, Froling M, Antal J Jr, Tester J (2008) Thermochemical biofuel production in hydrothermal media: a review of sub-and supercritical water technologies. Energy Env Sci 1:32–65CrossRefGoogle Scholar
  25. Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the U.S. Department of Energy's Aquatic Species Program—biodiesel from algae. National Renewable Energy Laboratory, Golden, Colorado. NREL/TP-580-24190 pp 1-328Google Scholar
  26. Smith A, London J, Stanier R (1967) Biochemical basis of obligate autotrophy in blue-green algae and thiobacilli. J Bacteriol 94:972–983PubMedCentralPubMedGoogle Scholar
  27. Smith S, Abbriano R, Hildebrand M (2012) Comparative analysis of diatom genomes reveals substantial differences in the organization of carbon partitioning pathways. Algal Res 1:2–16CrossRefGoogle Scholar
  28. Thomas R (1990) Triglyceride accumulation and the cell cycle in Chlorella. Masters thesis, Montana State University, Bozeman, MT, USAGoogle Scholar
  29. Vagelos R, Alberts A, Martin D (1963) Studies on the mechanism of activation of acetyl coenzyme A carboxylase by citrate. J. Biol Chem 239:533–540Google Scholar
  30. Valenzuela J, Mazurie A, Carlson R, Gerlach R, Cooksey K, Peyton B, Fields M (2012) Potential role of multiple carbon fixation pathways during lipid accumulation in Phaeodactylum tricornutum. Biotechnol Biofuels 5:1–17CrossRefGoogle Scholar
  31. Valenzuela J, Carson R, Gerlach R, Cooksey K, Peyton B, Bothner B, Fields M (2013) Nutrient re-supplementation arrests bio-oil accumulation in Phaeodactylum tricornutum. Appl Microbiol Biotechnol 97:7049–7059PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Montana State UniversityBozemanUSA

Personalised recommendations