Journal of Applied Phycology

, Volume 27, Issue 4, pp 1725–1735 | Cite as

Phylogeographic assessment of panmictic Monostroma species from Kuroshio Coast, Japan, reveals sympatric speciation

  • Felix BastEmail author
  • Satoshi Kubota
  • Kazuo Okuda


The marine algae genus Monostroma (Thuret) consists of some of the common intertidal green seaweeds in the world. However, reports on its interbreeding potential between geographical radiations or its phylogeography are nonexistent. Here, we show that warmwater Monostroma in SW Japan, previously thought to be composed of two morphological species, viz., Monostroma latissimum and Monostroma nitidum, is indeed a single biological species, as revealed by mating tests. Using morphometry and DNA barcoding by primary and secondary structure analyses of highly variable first internal transcribed spacer (nrDNA ITS1) and more evolutionarily conserved gene encoding small subunit ribosome (nrDNA 18S), we conclude that isolates of Monostroma latissimum-nitidum complex represent an emergence of sympatric speciation. Our molecular phylogenetic analyses suggest that this alga originated in Ise Bay and was deliberately introduced elsewhere in Japan for cultivation purposes. Our phylogenetic analyses also suggest that the character state of the ability to interbreed is more evolutionarily conserved than either ontological or morphological differences in this alga. This is the first report of such an extensive intraspecific sequence divergence in any of the panmictic eukaryotes.


Biological species DNA barcoding Kuroshio Morphometry nrDNA 18S nrDNA ITS1 Phylogeny Phylogeography Sympatric speciation 



This study was supported in part by Monbukagakusho Ph.D. fellowship from MEXT, Japanese Government, nominated by Ministry of Human Resources Development, Government of India, awarded to FB. FB also thank Japan Railways for contributing sampling expeditions undertaken in this report via discounted tickets (Seishun Jyuhachi Kippu). The following people kindly assisted us during the acquisition of samples: Masafumi Iima, Mine Ichiro, Miyuki Maegawa, Norishige Yotsukura, Ryuta Terada, Christine A Maggs, and Frédéric Mineur. MP Ajaikumar contributed his time and expertise in reading this manuscript that led to some improvisations.


  1. Alvarez I, Wendel JF (2003) Ribosomal ITS sequences and plant phylogenetic inference. Mol Phylogenet Evol 29:417–434PubMedCrossRefGoogle Scholar
  2. Andersen RA (1992) Diversity of eukaryotic algae. Biodivers Conserv 1:267–292CrossRefGoogle Scholar
  3. Arasaki S (1949) On the Monostroma found in Ise and Kikawa Bay. Nippon Suisan Gakkaishi 15:137–143CrossRefGoogle Scholar
  4. Bast F, Shimada S, Hiraoka M, Okuda K (2009a) Asexual life history by biflagellate zoids in Monostroma latissimum (Ulotrichales). Aquat Bot 91:213–218CrossRefGoogle Scholar
  5. Bast F, Shimada S, Hiraoka M, Okuda K (2009b) Seasonality and thallus ontogeny of edible seaweed Monostroma latissimum (Kützing) Wittrock, (Chlorophyta, Monostromataceae) from Tosa Bay, Kochi, Japan. Hydrobiologia 630:161–167CrossRefGoogle Scholar
  6. Bliding C (1968) A critical survey of European taxa in Ulvales, part II: Ulva, Ulvaria, Monostroma, Kornmannia. Bot Notiser 121:535–629Google Scholar
  7. Blomster J, Maggs CA, Stanhope MJ (1998) Molecular and morphological analysis of Enteromorpha intestinalis and E. compressa (Chlorophyta) in the British Isles. J Phycol 34:319–340CrossRefGoogle Scholar
  8. Carter N (1926) An investigation into the cytology and biology of the Ulvaceae. Ann Bot (Lond) 40:665–687Google Scholar
  9. Coleman AW, Mai JC (1997) Ribosomal ITS-1 and ITS-2 sequence comparisons as a tool for predicting genetic relatedness. J Mol Evol 45:168–177PubMedCrossRefGoogle Scholar
  10. Coleman AW, Suarez A, Goff L J (1994) Molecular Delineation of species and syngens in volvocacean green algae (chlorophyta) 1. J Phycol 30(1):80–90Google Scholar
  11. Coyer JA, Smith GJ, Anderson RA (2001) Evolution of Macrocystis spp. (Phaeophyceae) as determined by ITS1 and ITS2 sequences. J Phycol 37:574–585CrossRefGoogle Scholar
  12. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  13. Edger PP, Michelle T, Kevin AB, Dustin RM, Gavin C, Klaus M, Marcus AK, Chris PJ (2014) Secondary structure analyses of the nuclear rRNA internal transcribed spacers and assessment of its phylogenetic utility across the Brassicaceae (mustards). PLoS One 9:e101341PubMedCentralPubMedCrossRefGoogle Scholar
  14. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:137–195CrossRefGoogle Scholar
  15. Gayral P (1964) Sur le démembrement de l’actual genre Monostroma Thuret (Chlorophycées, Ulotrichales s.l.). CR Acad Sci Paris 258:2149–2152Google Scholar
  16. Gruber AR, Lorenz R, Bernhart SH, Neuböck R, Hofacker IL (2008) The Vienna RNA Websuite. Nucleic Acids Res 36(Web Server issue):W70–W74PubMedCentralPubMedCrossRefGoogle Scholar
  17. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704PubMedCrossRefGoogle Scholar
  18. Hasegawa M, Kishino H, Yano T (1985) Dating the human-ape split by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174PubMedCrossRefGoogle Scholar
  19. Hayden HS, Waaland JR (2002) Phylogenetic systematics of the Ulvaceae (Ulvales, Ulvophyceae) using chloroplast and nuclear DNA sequences. J Phycol 38:1200–1212CrossRefGoogle Scholar
  20. Hayden HS, Blomster J, Maggs CA, Silva PC, Stanhope MJ, Waaland JR (2003) Linnaeus was right all along: Ulva and Enteromorpha are not distinct genera. Eur J Phycol 38:277–294CrossRefGoogle Scholar
  21. Hillis DM, Dixon MT (1991) Ribosomal DNA: molecular evolution and phylogenetic inference. Q Rev Biol 66:411–453PubMedCrossRefGoogle Scholar
  22. Hori T (1973) Comparative studies of pyrenoid ultrastructure in algae of the Monostroma complex. J Phycol 9:190–199Google Scholar
  23. Hughey JR, Silva PC, Hommersand MH (2001) Solving taxonomic and nomenclatural problems in Pacific Gigartinaceae (Rhodophyta) using DNA from type material. J Phycol 37:1091–1109CrossRefGoogle Scholar
  24. JAMSTEC (2009) Japan Agency for Marine-Earth Science and Technology. World wide web document, URL: accessed on: 2009-11-06
  25. Kawashima Y, Akasaki T, Matsumoto Y, Yamazaki Y, Shimada S (2013) Species identification of imported and Japanese commercial green algal products based on phylogenetic analyses using the nrITS2 and 5S rDNA spacer regions. Fish Sci 79:521–529CrossRefGoogle Scholar
  26. Kida W (1990) Culture of seaweeds Monostroma. Mar Behav Physiol 16:109–131CrossRefGoogle Scholar
  27. Kooistra WHCF, Stam WT, Olsen JL, van den Hoek C (1992) Biogeography of Cladophoropsis membranacea (Chlorophyta) based on comparisons of nuclear rDNA ITS sequences. J Phycol 28:660–668CrossRefGoogle Scholar
  28. Kunieda H (1934) On the life history of Monostroma. Proc Imp Acad Tokyo 10:103–106Google Scholar
  29. Marks JC, Cummings MP (1996) DNA sequence variation in the ribosomal internal transcribed spacer region of freshwater Cladophora species (Chlorophyta). J Phycol 32:1035–1042CrossRefGoogle Scholar
  30. Nagura K (1921) Kaiso chosa hokoku. Rep Aichi Pref Exp Stat Fish 24:1Google Scholar
  31. O’Kelly CJ, Bellows WK, Wysor B (2004) Phylogenetic position of Bolbocoleon piliferum (Ulvophyceae, Chlorophyta): evidence from reproduction, zoospore and gamete ultrastructure, and small subunit rRNA gene sequences. J Phycol 40:209–222CrossRefGoogle Scholar
  32. Papenfuss GF (1960) On the genera of Ulvales and the status of the order. J Linn Soc Bot 56:303–318CrossRefGoogle Scholar
  33. Reiche K, Stadler PF (2007) RNAstrand: reading direction of structured RNAs in multiple sequence alignments. Algorithm Mol Biol 2:6CrossRefGoogle Scholar
  34. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics (Oxf) 19:1572–1574CrossRefGoogle Scholar
  35. Su Q (2002) Molecular systematic studies of several seaweeds in China, Ph.D. dissertation, Northeast Forestry University, China, 81 ppGoogle Scholar
  36. Thompson AJ, Herrin DL (1994) A chloroplast group I intron undergoes the first step of reverse splicing into host cytoplasmic 5.8 S rRNA. J Mol Biol 236:455–468PubMedCrossRefGoogle Scholar
  37. Thuret G (1854) Note sur la synonymie des Ulva lactuca et latissima L. suivie de quelques remarques sur la tribu des Ulvacées. Mém Soc Sci Nat Cherbourg 2:17–32Google Scholar
  38. Turner DH, Sugimoto N, Fresier SM (1998) RNA structure prediction. Annu Rev Biophys Biophys Chem 17:167–192CrossRefGoogle Scholar
  39. van de Peer Y, De Rijik P, Wuyts J, Winkelmans T, De Wachter R (2000) The European small subunit ribosomal RNA database. Nucleic Acids Res 28:175–176PubMedCentralPubMedCrossRefGoogle Scholar
  40. van Nues RW, Rientjes JMJ, van der Sande CAFM, Zerp SF, Sluiter C, Venema J, Planta RJ, Raué HA (1994) Separate structural elements within internal transcribed spacer 1 of Saccharomyces cerevisiae precursor ribosomal RNA direct the formation of 17S and 26S rRNA. Nucleic Acids Res 22:912–919PubMedCentralPubMedCrossRefGoogle Scholar
  41. van Oppen MJH (1995) Tracking trails by cracking codes. Molecular biogeography and evolution of benthic cold-water seaweeds. Ph.D. dissertation, Rijksuniversiteit Groningen, 163 ppGoogle Scholar
  42. van Tussenbroek BI (1989) Smooth-bladed Macrocystis (Laminariales, Phaeophyta) from the Falkland Islands. Phycologia 28:520–523CrossRefGoogle Scholar
  43. Wheeler WC (1990) Nucleic acid sequence phylogeny and random outgroups. Cladistics 6:363–367CrossRefGoogle Scholar
  44. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M, Gelfand J, Sninsky J, White T (eds) PCR protocols : a guide to methods and applications. Academic, Orlando, pp 315–322Google Scholar
  45. Wittrock VB (1866) Försök till en monographi öfver algslägtet Monostroma. Ph.D. dissertation, Uppsala University, Sweden, 66 ppGoogle Scholar
  46. Yang Z (1994a) Estimating the pattern of nucleotide substitution. J Mol Evol 39:105–111PubMedGoogle Scholar
  47. Yang Z (1994b) Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J Mol Evol 39:306–314PubMedCrossRefGoogle Scholar
  48. Yendo K (1917) Notes on algae new to Japan, part VII. Bot Mag 31:183–188CrossRefGoogle Scholar
  49. Yoshida T (1998) Marine algae of Japan. Uchida Rokahuko Publishing, Tokyo, 1222 ppGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Graduate School of Kuroshio ScienceKochi UniversityKochiJapan
  2. 2.Centre for BiosciencesCentral University of PunjabBathindaIndia

Personalised recommendations