Journal of Applied Phycology

, Volume 27, Issue 4, pp 1623–1637 | Cite as

Seaweeds with anti-herpes simplex virus type 1 activity

  • Caroline de Souza Barros
  • Valéria Laneuville TeixeiraEmail author
  • Izabel Christina N. P. PaixãoEmail author


Many compounds derived from marine organisms have new and unusual structures with significant biological activities, and pharmacological properties, including antiviral activity, of seaweed natural products, have been discovered. The herpes simplex virus type 1 (HSV-1) infection is endemic worldwide and is one of the most prevalent infections in Brazil. Although several antiviral substances are available for the treatment of individuals infected with herpes simplex virus type 1, the development of resistant mutations of herpes viruses, the side effects associated with the drugs available, and the occurrence of severe cases of the disease have shown the importance of the search for new effective therapies against herpes. Hence, the aim of this review is to summarize and discuss the information on the extracts and isolated molecules from different seaweeds with anti-herpes simplex virus type 1 activity. Perspectives for choosing classes and orders of algae for future studies with this activity are discussed.


Seaweeds Marine natural products Antiviral Drug HSV-1 



The authors are grateful to CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for financial support and to ICNPP and VLT for Productivity Fellowships. The authors also thank the FAPERJ (Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro) for Cientista do Nosso Estado Fellowship. CSB thanks FAPERJ for the DSc fellowship.


  1. Abad Martinez MJ, Bedoya Del Olmo LM, Bermejo Benito P (2008) Natural marine antiviral products. Stud Nat Prod Chem 35:101–134CrossRefGoogle Scholar
  2. Abrantes JL, Barbosa J, Cavalcanti D, Pereira RC, Frederico Fontes CL, Teixeira VL, Moreno Souza TL, Paixao IC (2010) The effects of the diterpenes isolated from the Brazilian brown algae Dictyota pfaffii and Dictyota menstrualis against the herpes simplex type-1 replicative cycle. Planta Med 76:339–344PubMedCrossRefGoogle Scholar
  3. Adhikari U, Mateu CG, Chattopadhyay K, Pujol CA, Damonte EB, Ray B (2006) Structure and antiviral activity of sulfated fucans from Stoechospermum marginatum. Phytochemistry 67:2474–2482PubMedCrossRefGoogle Scholar
  4. Andrei G, Snoeck R, De Clercq E, Esnouf R, Fiten P, Opdenakker G (2000) Resistance of herpes simplex virus type 1 against different phosphonylmethoxyalkyl derivatives of purines and pyrimidines due to specific mutations in the viral DNA polymerase gene. J Gen Virol 81:639–648Google Scholar
  5. Arif JM, Al-Hazzani AA, Kunhi M, Al-Khodairy F (2004) Novel marine compounds: anticancer or genotoxic? J Biomed Biotechnol 2004:93–98PubMedCentralPubMedCrossRefGoogle Scholar
  6. Barbosa JP, Pereira RC, Abrantes J, Dos Santos CC, Rebello MA, de Palmer Paixao Frugulhetti I, Teixeira VL (2004) In vitro antiviral diterpenes from the Brazilian brown alga Dictyota pfaffii. Planta Med 70:856–860PubMedCrossRefGoogle Scholar
  7. Bianco EM, de Oliveira SQ, Rigotto C, Tonini ML, da Rosa GT, Bittencourt F, Gouvêa LP, Aresi C, de Almeida MT, Moritz MI, Martins CD, Scherner F, Carraro JL, Horta PA, Reginatto FH, Steindel M, Simões CM, Schenkel EP (2013) Anti-infective potential of marine invertebrates and seaweeds from the Brazilian coast. Molecules 18:5761–5778PubMedCrossRefGoogle Scholar
  8. Bouhlal R, Riadi H, Bourgougnon N (2010) Antiviral activity of the extracts of Rhodophyceae from Morocco. Afr J Biotechnol 9:7968–7975Google Scholar
  9. Bouhlal R, Haslin C, Chermann JC, Colliec-Jouault S, Sinquin C, Simon G, Cerantola S, Riadi H, Bourgougnon N (2011) Antiviral activities of sulfated polysaccharides isolated from Sphaerococcus coronopifolius (Rhodophytha, Gigartinales) and Boergeseniella thuyoides (Rhodophyta, Ceramiales). Mar Drugs 9:1187–1209PubMedCentralPubMedCrossRefGoogle Scholar
  10. Brady RC, Bernstein DI (2004) Treatment of herpes simplex virus infections. Antivir Res 61:73–81PubMedCrossRefGoogle Scholar
  11. Cáceres PJ, Carlucci MJ, Damonte EB, Matsuhiro B, Zúñiga EA (2000) Carrageenans from Chilean samples of Stenogramme interrupta (Phyllophoraceae): structural analysis and biological activity. Phytochemistry 53:81–86PubMedCrossRefGoogle Scholar
  12. Carlucci MJ, Pujol CA, Ciancia M, Noseda MD, Matulewicz MC, Damonte EB, Cerezo AS (1997a) Antiherpetic and anticoagulant properties of carrageenans from the red seaweed Gigartina skottsbergii and their cyclized derivatives: correlation between structure and biological activity. Int J Biol Macromol 20:97–105PubMedCrossRefGoogle Scholar
  13. Carlucci MJ, Scolaro LA, Errea MI, Matulewicz MC, Damonte EB (1997b) Antiviral activity of natural sulphated galactans on herpes virus multiplication in cell culture. Planta Med 63:429–432PubMedCrossRefGoogle Scholar
  14. Carlucci M, Ciancia M, Matulewicz M, Cerezo A, Damonte E (1999) Antiherpetic activity and mode of action of natural carrageenans of diverse structural types. Antiviral Res 43:93–102PubMedCrossRefGoogle Scholar
  15. Chattopadhyay K, Mateu CG, Mandal P, Pujol CA, Damonte EB, Ray B (2007) Galactan sulfate of Grateloupia indica: Isolation, structural features and antiviral activity. Phytochemistry 68:1428–1435PubMedCrossRefGoogle Scholar
  16. Cirne-Santos CC, Souza TML, Teixeira VL, Fontes CFL, Rebello MA, Castello-Branco LRR, Abreu CM, Tanuri A, Frugulhetti IC, Bou-Habib DC (2008) The dolabellane diterpene Dolabelladienetriol is a typical noncompetitive inhibitor of HIV-1 reverse transcriptase enzyme. Antiviral Res 77:64–71PubMedCrossRefGoogle Scholar
  17. Clemens SAC, Farhat CK (2010) Soroprevalência de anticorpos contra vírus herpes simples 1-2 no Brasil. Rev Saúde Pública 44:726–734PubMedCrossRefGoogle Scholar
  18. Da Matta CB, de Souza ET, de Queiroz AC, de Lira DP, de Araujo MV, Cavalcante-Silva LH, de Miranda GE, de Araujo-Junior JX, Barbosa-Filho JM, de Oliveira Santos BV, Alexandre-Moreira MS (2011) Antinociceptive and anti-inflammatory activity from algae of the genus Caulerpa. Mar Drugs 9:307–318PubMedCentralPubMedCrossRefGoogle Scholar
  19. De Clercq E (2004) Antiviral drugs in current clinical use. J Clin Virol 30:115–133PubMedCrossRefGoogle Scholar
  20. de SF-Tischer PC, Talarico LB, Noseda MD, Pita B, Guimarães SM, Damonte EB, Duarte MER (2006) Chemical structure and antiviral activity of carrageenans from Meristiella gelidium against herpes simplex and dengue virus. Carbohydr Polym 63:459–465CrossRefGoogle Scholar
  21. de Souza LM, Sassaki GL, Romanos MT, Barreto-Bergter E (2012) Structural characterization and anti-HSV-1 and HSV-2 activity of glycolipids from the marine algae Osmundaria obtusiloba isolated from Southeastern Brazilian coast. Mar Drugs 10:918–931PubMedCentralPubMedCrossRefGoogle Scholar
  22. Duarte M, Noseda D, Noseda M, Tulio S, Pujol C, Damonte E (2001) Inhibitory effect of sulfated galactans from the marine alga Bostrychia montagnei on herpes simplex virus replication in vitro. Phytomedicine 8:53–58PubMedCrossRefGoogle Scholar
  23. Duarte ME, Cauduro JP, Noseda DG, Noseda MD, Gonçalves AG, Pujol CA, Damonte EB, Cerezo AS (2004) The structure of the agaran sulfate from Acanthophora spicifera (Rhodomelaceae, Ceramiales) and its antiviral activity. Relation between structure and antiviral activity in agarans. Carbohydr Res 339:335–347PubMedCrossRefGoogle Scholar
  24. Ernst ME, Franey RJ (1998) Acyclovir- and ganciclovir-induced neurotoxicity. Ann Pharmacother 32:111–113PubMedCrossRefGoogle Scholar
  25. Faral-Tello P, Mirazo S, Dutra C, Perez A, Geis-Asteggiante L, Frabasile S, Koncke E, Davyt D, Cavallaro L, Heinzen H, Arbiza J (2012) Cytotoxic, virucidal, and antiviral activity of South American plant and algae extracts. ScientificWorld J 2012:174837CrossRefGoogle Scholar
  26. Feldman S, Reynaldi S, Stortz C, Cerezo A, Damonte E (1999) Antiviral properties of fucoidan fractions from Leathesia difformis. Phytomedicine 6:335–340PubMedCrossRefGoogle Scholar
  27. Fernandes DRP, de Oliveira VP, Valentin YY (2014) Seaweed biotechnology in Brazil: six decades of studies on natural products and their antibiotic and other biological activities. J Appl Phycol 26:1923–1937CrossRefGoogle Scholar
  28. Fleury B, Kelecom A, Pereira R, Teixeira V (1994) Polyphenols, terpenes and sterols in Brazilian Dictyotales and Fucales (Phaeophyta). Bot Mar 37:457–462CrossRefGoogle Scholar
  29. Garrido V, Teixeira GA, Teixeira VL, Ocampo P, Ferreira WJ, Cavalcanti DN, Campos S, Md P, Olaya P, dos Santos CC, Giongo V, Paixão ICP (2011) Evaluation of the acute toxicity of dolabelladienotriol, a potential antiviral from the brown alga Dictyota pfaffii, in BALB/c mice. Rev Bras Farmacogn 21:209–215CrossRefGoogle Scholar
  30. Ghosh P, Adhikari U, Ghosal PK, Pujol CA, Carlucci MJ, Damonte EB, Ray B (2004) In vitro anti-herpetic activity of sulfated polysaccharide fractions from Caulerpa racemosa. Phytochemistry 65:3151–3157PubMedCrossRefGoogle Scholar
  31. Gustafson KR, Oku N, Milanowski DJ (2004) Antiviral marine natural products. Curr Med Chem: Anti-Infect Agents 3:233–249Google Scholar
  32. Hayashi K, Nakano T, Hashimoto M, Kanekiyo K, Hayashi T (2008) Defensive effects of a fucoidan from brown alga Undaria pinnatifida against herpes simplex virus infection. Int Immunopharmacol 8:109–116PubMedCrossRefGoogle Scholar
  33. Hemmingson J, Falshaw R, Furneaux R, Thompson K (2006) Structure and antiviral activity of the galactofucan sulfates extracted from Undaria pinnatifida (Phaeophyta). J Appl Phycol 18:185–193CrossRefGoogle Scholar
  34. Hoshino T, Hayashi T, Hayashi K, Hamada J, Lee J-B, Sankawa U (1998) An antivirally active sulfated polysaccharide from Sargassum horneri (Turner) C. Agardh Biol Pharm Bull 21:730–734CrossRefGoogle Scholar
  35. Hudson J, Kim J, Lee M, Hong Y, DeWreede R (1999) Multiple antiviral activities in extracts of seaweeds from British Columbia. Pharm Biol 37:300–306CrossRefGoogle Scholar
  36. Kelecom A, Teixeira VL (1988) Dolastane diterpenes from the marine brown alga Dictyota cervicornis. Phytochemistry 27:2907–2909CrossRefGoogle Scholar
  37. Kim JH , Huang AM, Bannister K, Choi TJ, Towers GHN, DeWreede RE, Hudson JB, Jin H, Hong YK (1997) Biological activities of seaweed extracts from British Columbia, Canada, and Korea. I. Antiviral activity. Can J Bot 75:1656–1660Google Scholar
  38. Knutsen S, Myslabodski D, Larsen B, Usov A (1994) A modified system of nomenclature for red algal galactans. Bot Mar 37:163–170CrossRefGoogle Scholar
  39. Kolender AA, Pujol CA, Damonte EB, Matulewicz MC, Cerezo AS (1997) The system of sulfated α-(1 → 3)-linked d-mannans from the red seaweed Nothogenia fastigiata: structures, antiherpetic and anticoagulant properties. Carbohydr Res 304:53–60PubMedCrossRefGoogle Scholar
  40. Lee J-B, Hayashi K, Hashimoto M, Nakano T, Hayashi T (2004a) Novel antiviral fucoidan from sporophyll of Undaria pinnatifida (Mekabu). Chem Pharm Bull 52:1091–1094PubMedCrossRefGoogle Scholar
  41. Lee J-B, Hayashi K, Maeda M, Hayashi T (2004b) Antiherpetic activities of sulfated polysaccharides from green algae. Planta Med 70:813–817PubMedCrossRefGoogle Scholar
  42. Lima-Filho JVM, Carvalho AF, Freitas SM, Melo VM (2002) Antibacterial activity of extracts of six macroalgae from the northeastern Brazilian coast. Braz J Microbiol 33:311–314CrossRefGoogle Scholar
  43. Lycke E, Johansson M, Svennerholm B, Lindahl U (1991) Binding of herpes simplex virus to cellular heparan sulphate, an initial step in the adsorption process. J Gen Virol 72:1131–1137PubMedCrossRefGoogle Scholar
  44. Macedo NRPV, Ribeiro MS, Villaca RC, Ferreira W, Pinto AM, Teixeira VL, Cirne-Santos C, Paixao ICNP, Giongo V (2012) Caulerpin as a potential antiviral drug against herpes simplex virus type 1. Rev Bras Farmacogn 22:861–867CrossRefGoogle Scholar
  45. Mandal P, Mateu CG, Chattopadhyay K, Pujol CA, Damonte EB, Ray B (2007) Structural features and antiviral activity of sulphated fucans from the brown seaweed Cystoseira indica. Antiviral Chem Chemother 18:153–162CrossRefGoogle Scholar
  46. Maschek JA, Baker BJ (2008) The chemistry of algal secondary metabolism. In: Amsler CD (ed) Algal chemical ecology. Springer, Berlin, pp pp 1–24CrossRefGoogle Scholar
  47. Matsuhiro B et al (2005) Structural analysis and antiviral activity of a sulfated galactan from the red seaweed Schizymenia binderi (Gigartinales, Rhodophyta). Carbohydr Res 340:2392–2402PubMedCrossRefGoogle Scholar
  48. Mattos BB, Romanos MTV, Souza LM, Sassaki G, Barreto-Bergter E (2011) Glycolipids from macroalgae: potential biomolecules for marine biotechnology? Rev Bras Farmacogn 21:244–247CrossRefGoogle Scholar
  49. Mendes GS, Bravin IC, Yoneshigue-Valentin Y, Yokoya NS, Romanos MTV (2012) Anti-HSV activity of Hypnea musciformis cultured with different phytohormones. Rev Bras Farmacogn 22:789–794CrossRefGoogle Scholar
  50. Ohta Y, Lee J-B, Hayashi K, Hayashi T (2009) Isolation of sulfated galactan from Codium fragile and its antiviral effect. Biol Pharm Bull 32:892–898PubMedCrossRefGoogle Scholar
  51. Park HJ, Kurokawa M, Shiraki K, Nakamura N, Choi JS, Hattori M (2005) Antiviral activity of the marine alga Symphyocladia latiuscula against herpes simplex virus (HSV-1) in vitro and its therapeutic efficacy against HSV-1 infection in mice. Biol Pharm Bull 28:2258–2262PubMedCrossRefGoogle Scholar
  52. Paul VJ, Puglisi MP (2004) Chemical mediation of interactions among marine organisms. Nat Prod Rep 21:189–209PubMedCrossRefGoogle Scholar
  53. Paul V, Cruz-Rivera E, Thacker R (2001) Chemical mediation of macroalgal-herbivore interactions: ecological and evolutionary perspectives. In: McClintock JB, Baker BJ (eds) Marine chemical ecology. CRC, Boca Raton, pp 227–265Google Scholar
  54. Peng Y, Xie E, Zheng K, Fredimoses M, Yang X, Zhou X, Wang Y, Yang B, Lin X, Liu J (2012) Nutritional and chemical composition and antiviral activity of cultivated seaweed Sargassum naozhouense Tseng et Lu. Mar Drugs 11:20–32PubMedCentralPubMedCrossRefGoogle Scholar
  55. Plouguerné E, de Souza LM, Sassaki GL, Cavalcanti JF, Villela Romanos MT, da Gama BA, Pereira RC, Barreto-Bergter E (2013) Antiviral sulfoquinovosyldiacylglycerols (SQDGs) from the Brazilian brown seaweed Sargassum vulgare. Mar Drugs 11:4628–4640PubMedCentralPubMedCrossRefGoogle Scholar
  56. Ponce N, Pujol CA, Damonte EB, Flores ML, Stortz CA (2003) Fucoidans from the brown seaweed Adenocystis utricularis: extraction methods, antiviral activity and structural studies. Carbohydr Res 338:153–165PubMedCrossRefGoogle Scholar
  57. Preeprame S, Hayashi K, Lee J-B, Sankawa U, Hayashi T (2001) A novel antivirally active fucan sulfate derived from an edible brown alga, Sargassum horneri. Chem Pharm Bull 49:484–485PubMedCrossRefGoogle Scholar
  58. Pujol CA, Errea MI, Matulewicz MC, Damonte EB (1996) Antiherpetic activity of S1, an algal derived sulphated galactan. Phytother Res 10:410–413CrossRefGoogle Scholar
  59. Rodríguez MC, Merino ER, Pujol CA, Damonte EB, Cerezo AS, Matulewicz MC (2005) Galactans from cystocarpic plants of the red seaweed Callophyllis variegata (Kallymeniaceae, Gigartinales). Carbohydr Res 340:2742–2751PubMedCrossRefGoogle Scholar
  60. Santos M, Lagrota M, Miranda M, Yoneshigue-Valentin Y, Wigg M (1999) A screening for the antiviral effect of extracts from Brazilian marine algae against acyclovir resistant herpes simplex virus type 1. Bot Mar 42:227–230CrossRefGoogle Scholar
  61. Santos AO, Veiga-Santos P, Ueda-Nakamura T, Sudatti DB, Bianco ÉM, Pereira RC, Nakamura CV (2010) Effect of elatol, isolated from red seaweed Laurencia dendroidea, on Leishmania amazonensis. Mar Drugs 8:2733–2743PubMedCentralPubMedCrossRefGoogle Scholar
  62. Serkedjieva J (2000) Antiherpes virus effect of the red marine alga Polysiphonia denudata. Z Naturforsch C 55:830–835PubMedGoogle Scholar
  63. Serkedjieva J (2004) Antiviral activity of the red marine alga Ceramium rubrum. Phytother Res 18:480–483PubMedCrossRefGoogle Scholar
  64. Shieh M-T, WuDunn D, Montgomery RI, Esko JD, Spear PG (1992) Cell surface receptors for herpes simplex virus are heparan sulfate proteoglycans. J Cell Biol 116:1273–1281PubMedCrossRefGoogle Scholar
  65. Siamopoulou P, Bimplakis A, Iliopoulou D, Vagias C, Cos P, Vanden Berghe D, Roussis V (2004) Diterpenes from the brown algae Dictyota dichotoma and Dictyota linearis. Phytochemistry 65:2025–2030PubMedCrossRefGoogle Scholar
  66. Sims JJ, Lin GH, Wing RM (1974) Marine natural products X. elatol, a halogenated sesquiterpene alcohol from the red alga Laurencia elata. Tetrahedron Lett 15:3487–3490CrossRefGoogle Scholar
  67. Smit AJ (2004) Medicinal and pharmaceutical uses of seaweed natural products: a review. J Appl Phycol 16:245–262CrossRefGoogle Scholar
  68. Soares AR, Abrantes JL, Souza TML, Fontes CFL, Pereira RC, de Palmer Paixao Frugulhetti IC, Teixeira VL (2007) In vitro antiviral effect of meroditerpenes isolated from the Brazilian seaweed Stypopodium zonale (Dictyotales). Planta Med 73:1221PubMedCrossRefGoogle Scholar
  69. Soares AR, Robaina M, Mendes GS, Silva TS, Gestinari L, Pamplona OS, Yoneshigue-Valentin Y, Kaiser CR, Romanos MTV (2012) Antiviral activity of extracts from Brazilian seaweeds against herpes simplex virus. Rev Bras Farmacogn 22:714–723CrossRefGoogle Scholar
  70. Talarico LB, Zibetti RG, Faria P, Scolaro LA, Duarte ME, Noseda MD, Pujol CA, Damonte EB (2004) Anti-herpes simplex virus activity of sulfated galactans from the red seaweeds Gymnogongrus griffithsiae and Cryptonemia crenulata. Int J Biol Macromol 34:63–71PubMedCrossRefGoogle Scholar
  71. Teixeira VL (2012) Produtos naturais de algas marinhas bentônicas. Rev Virtual Quim 5:343–362Google Scholar
  72. Teixeira V, Tomassini T, Kelecom A (1986) Cervicol, a further secodolastane diterpene from the marine brown alga Dictyota cervicornis Kützing (Phaeophyceae, Dictyotaceae). Bull Soc Chim Belg 95:263–268CrossRefGoogle Scholar
  73. Thompson KD, Dragar C (2004) Antiviral activity of Undaria pinnatifida against herpes simplex virus. Phytother Res 18:551–555PubMedCrossRefGoogle Scholar
  74. Uzair B, Mahmood Z, Tabassum S (2011) Antiviral activity of natural products extracted from marine organisms. BioImpacts 1:203PubMedCentralPubMedGoogle Scholar
  75. Vallim MA, Barbosa JE, Cavalcanti DN, De-Paula JC, Silva VAGG, Teixeira VL, Paixão ICNP (2010) In vitro antiviral activity of diterpenes isolated from the Brazilian brown alga Canistrocarpus cervicornis. J Med Plants Res 4:2379–2382Google Scholar
  76. Vo T-S, Ngo D-H, Ta QV, Kim S-K (2011) Marine organisms as a therapeutic source against herpes simplex virus infection. Eur J Pharm Sci 44:11–20PubMedCrossRefGoogle Scholar
  77. Wang H, Ooi EV, Ang PO Jr (2008) Antiviral activities of extracts from Hong Kong seaweeds. J Zhejiang Univ Sci B 9:969–976PubMedCentralPubMedCrossRefGoogle Scholar
  78. Wang W, Wang S-X, Guan H-S (2012) The antiviral activities and mechanisms of marine polysaccharides: an overview. Mar Drugs 10:2795–2816PubMedCentralPubMedCrossRefGoogle Scholar
  79. WuDunn D, Spear PG (1989) Initial interaction of herpes simplex virus with cells is binding to heparan sulfate. J Virol 63:52–58PubMedCentralPubMedGoogle Scholar
  80. Wutzler P, Thust R (2001) Genetic risks of antiviral nucleoside analogues—a survey. Antiviral Res 49:55–74PubMedCrossRefGoogle Scholar
  81. Yarmolinsky L, Zaccai M, Ben-Shabat S, Huleihel M (2010) Anti-herpetic activity of Callissia fragrans and Simmondsia chinensis leaf extracts in vitro. Open Virol J 4:57–62PubMedCentralPubMedCrossRefGoogle Scholar
  82. Yasuhara-Bell J, Yang Y, Barlow R, Trapido-Rosenthal H, Lu Y (2010) In vitro evaluation of marine-microorganism extracts for anti-viral activity. Virol J 7:182PubMedCentralPubMedCrossRefGoogle Scholar
  83. Zanetta G, Maurice-Estepa L, Mousson C, Justrabo E, Daudon M, Rifle G, Tanter Y (1999) Foscarnet-induced crystalline glomerulonephritis with nephrotic syndrome and acute renal failure after kidney transplantation. Transplantation 67:1376–1378PubMedCrossRefGoogle Scholar
  84. Zhu W, Chiu L, Ooi V, Chan P, Ang P Jr (2006) Antiviral property and mechanisms of a sulphated polysaccharide from the brown alga Sargassum patens against Herpes simplex virus type 1. Phytomedicine 13:695–701PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Programa Pós-graduação em Ciências e Biotecnologia (PPBI)Universidade Federal Fluminense (UFF)NiteróiBrazil
  2. 2.Laboratório ALGAMAR, Departamento de Biologia MarinhaInstituto de Biologia (UFF)NiteróiBrazil
  3. 3.Laboratório de Virologia Molecular e Biotecnologia Marinha, Departamento de Biologia Celular e MolecularInstituto de Biologia (UFF)NiteróiBrazil

Personalised recommendations