Potential applications of nuisance microalgae blooms

Abstract

Algal blooms have become a major concern in coastal areas and the great lakes of the world. Because of their various consequences for aquatic ecosystems and resources, algal blooms are called “harmful algal blooms” (HABs). HABs often become severely detrimental when they involve one or more toxin-producing microalgae of various taxonomic origins. The accumulation of algal biomass also has deleterious effects on the ecological status of water. However, appropriate management strategies can allow the beneficial utilization of these events by consuming the biomass feedstock in the production of valuable biocommodities, including biofuels, functional food ingredients, UV-absorbing compounds, pharmaceutical products, etc. However, if the algal biomass can be harvested prior to the onset of their death phase, nutrients (carbon, nitrogen, and phosphorus) can also be removed from the ecosystem by harvesting the algal blooms. Great progress has been made in the last decade in monitoring and predicting HABs, and a demand is emerging for persuasive postevent management policies that focus on the potential utilization of these blooms as natural renewable bioresources. This review summarizes various potential applications of nuisance algal blooms and the need for scientific research into their economic and industrial potential. Major algal products with great ecological and economic significance and their contemporary global utilization are analyzed.

This is a preview of subscription content, log in to check access.

References

  1. Anderson DM (1997) Turning back the harmful red tide. Nature 388:513–514

    CAS  Google Scholar 

  2. Anderson DM, Cembella AD, Hallegraeff GM (2012) Progress in understanding harmful algal blooms: paradigm shifts and new technologies for research, monitoring, and management. Annu Rev Mar Sci 4:143–176

  3. Aw MS, Simovic S, Yu Y, Addai-Mensah J, Losic D (2012) Porous silica microshells from diatoms as biocarrier for drug delivery applications. Powder Technol 223:52–58

    CAS  Google Scholar 

  4. Balskus EP, Walash CT (2010) The genetic and molecular basis for sunscreen biosynthesis in cyanobacteria. Science 329:1653–1656

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Bandaranayake WM (1998) Mycosporines: are they nature’s sunscreens? Nat Prod Rep 15:159–172

    CAS  PubMed  Google Scholar 

  6. Barros MP, Pinto E, Sigaud-Kutner TCS, Cardozo KHM, Colepicolo P (2005) Rhythmicity and oxidative/nitrosative stress in algae. Biol Rhythm Res 36:67–82

    CAS  Google Scholar 

  7. BCC Research (2011) The global market for carotenoids. http://www.bccresearch.com/report/carotenoids-global-market-fod025d.html. Accessed 3 Sept 2014

  8. Bhandari RR, Sharma PK (2011) Photosynthetic and biochemical characterization of pigments and UV-absorbing compounds in Phormidium tenue due to UV-B radiation. J Appl Phycol 23:283–292

    CAS  Google Scholar 

  9. Bhatia S, Garg A, Sharma K, Kumar S, Sharma A, Purohit AP (2011) Mycosporine and mycosporine-like amino acids: a paramount tool against ultra violet irradiation. Pharmacol Rev 5:138–146

    CAS  Google Scholar 

  10. Boesch DF, Anderson DM, Horner RA, Shumway SE, Tester PA, Whitledge TE (1997) Harmful algal blooms in coastal waters: options for prevention, control, and mitigation. NOAA Coastal Ocean Program Decision Analysis Series No. 10. NOAA Coastal Ocean Office, Silver Spring, MD. 46 pp + appendix

  11. Böhm GA, Pfleiderer W, Böger P, Scherer S (1995) Structure of a novel pigment from the terrestrial cyanobacterium Nostoc commune. J Biol Chem 270:8536–8539

    PubMed  Google Scholar 

  12. Borowitzka MA (1992) Algal biotechnology products and processes-matching science and economics. J Appl Phycol 4:267–279

    Google Scholar 

  13. Borowitzka MA (1997) Algae for aquaculture: opportunities and constraints. J Appl Phycol 9:393–401

    Google Scholar 

  14. Borowitzka MA (2013a) High-value products from microalgae—their development and commercialisation. J Appl Phycol 25:743–756

    CAS  Google Scholar 

  15. Borowitzka MA (2013b) Dunaliella: Biology, production, and markets. In: Richmond A, Hu Q (eds) Handbook of Microalgal Culture. John Wiley & Sons, Ltd, pp 359–368

  16. Bruhn A, Dahl J, Nielsen HB, Nikolaisen L, Rasmussen MB, Markager S, Olesen B, Arias C, Jensen PD (2011) Bioenergy potential of Ulva lactuca: biomass yield, methane production and combustion. Biores Technol 102:2595–2604

    CAS  Google Scholar 

  17. Buesseler KO, Doney SC, Karl DM, Boyd PW, Fei C, Coale KH, De Baar JWH, Falkowski PG, Johnson KS, Lampitt RS, Michaels AF, Nagvi SWA, Smetacek V, Takeda S, Watson AJ (2008) Ocean iron fertilization—moving forward in a sea of uncertainty. Science 319:162

    CAS  PubMed  Google Scholar 

  18. Bux F (2013) Biotechnological applications of microalgae: biodiesel and value-added products. CRC, Boca Raton

    Google Scholar 

  19. Cardozo KH, Guaratini T, Barros MP, Falcão VR, Tonon AP, Lopes NP, Campos S, Torres MA, Souza AO, Colepicolo P, Pinto E (2007) Metabolites from algae with economical impact. Comp Biochem Physiol C 146:60–78

    Google Scholar 

  20. Carreto JI, Carignan MO, Montoya NG (2001) Comparative studies on mycosporine-like amino acids, paralytic shellfish toxins and pigment profiles of the toxic dinoflagellates Alexandrium tamarense, A. catenella, and A. minimum. Mar Ecol Prog Ser 223:49–60

    CAS  Google Scholar 

  21. Chakdar HC, Jadhav SD, Dhar DW, Pabbi S (2012) Potential applications of blue green algae. J Sci Ind Res 71:13–20

    CAS  Google Scholar 

  22. Chaudhari TS, Dalai KA, Bakhshi NN (2003) Production of hydrogen and/or syngas via steam gasification of biomass-derived chars. Energy Fuels 17:1062–1067

    CAS  Google Scholar 

  23. Chauton MS, Skolem LMB, Olsen LM, Vullum PE, Walmsley J, Vadstein O (2014) Titanium uptake and incorporation into silica nanostructures by the diatom Pinnularia sp. (Bacillariophyceae). J Appl Phycol doi:10.1007/s10811-014-0373-8:1–10

  24. Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102:71–81

    CAS  PubMed  Google Scholar 

  25. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    CAS  PubMed  Google Scholar 

  26. Cloern JE, Jassby AD (2010) Patterns and scales of phytoplankton variability in estuarine-coastal ecosystems. Estuar Coast Shelf Sci 33:230–241

    CAS  Google Scholar 

  27. Conde FR, Churio MS, Previtali CM (2004) The deactivation pathways of the excited-states of the mycosporine-like amino acids shinorine and porphyra-334 in aqueous solution. Photochem Photobiol Sci 3:960–967

    CAS  PubMed  Google Scholar 

  28. Cornish ML, Garbary DJ (2010) Antioxidants from macroalgae: potential applications in human health and nutrition. Algae 25:155–171

    CAS  Google Scholar 

  29. Cragg GM, Newman DJ, Snader KM (1997) Natural products in drug discovery and development. J Nat Prod 60:52–60

    CAS  PubMed  Google Scholar 

  30. Daniel S, Cornelia S, Fred Z (2004) UV-A sunscreen from red algae for protection against premature skin aging. Cosmet Toilet Manuf Worldwide pp. 39–143

  31. de la Coba F, Aguilera J, de Gálvez MV, Álvarez M, Gallego E, Figueroa FL, Herrera E (2009) Prevention of the ultraviolet effects on clinical and histopathological changes, as well as the heat shock protein-70 expression in mouse skin by topical application of algal UV-absorbing compounds. J Dermatol Sci 55:161–169

    PubMed  Google Scholar 

  32. Del Campo JA, García-Gonzáles M, Guerrero MG (2007) Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl Microbiol Biotechnol 74:1163–1174

    CAS  PubMed  Google Scholar 

  33. Dunlap WC, Yamamoto Y (1995) Small-molecule antioxidants in marine organisms: antioxidant activity of mycosporine-glycine. Comp Biochem Physiol B 112:105–114

    Google Scholar 

  34. Elliott DC, Neuenschwander GC, Hart TR (2013) Hydroprocessing biooil and products separation for coke production. ACS Sustain Chem Eng 1:389–392

  35. Emeish S (2012) Production of natural β-carotene from Dunaliella living in the Dead Sea. Jordan J Earth Env Sci 4:23–27

    Google Scholar 

  36. Eriksen NT (2008) Production of phycocyanin—a pigment with applications in biology, biotechnology, foods and medicine. Appl Microbiol Biotechnol 80:1–14

    CAS  PubMed  Google Scholar 

  37. Ferreira JG, Andersen JH, Borja A, Bricker SB, Camp J, da Silva MC, Garces E, Heiskanen AS, Humborg C, Ignatiades L, Lancelot C, Menesguen A, Tett P, Hoepffner N, Claussen U (2011) Overview of eutrophication indicators to assess environmental status within the European Marine Strategy Framework Directive. Estuar Coast Shelf Sci 93:117–131

    CAS  Google Scholar 

  38. Ferroni L, Klisch M, Pancaldi S, Häder D-P (2010) Complementary UV-absorption of mycosporine-like amino acids and scytonemin is responsible for the UV-insensitivity of photosynthesis in Nostoc flagelliforme. Mar Drugs 8:106–121

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Garcia-Pichel F, Castenholz R (1993) Occurrence of UV-absorbing, mycosporine-like compounds among cyanobacterial isolates and an estimate of their screening capacity. Appl Environ Microbiol 59:163–169

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Ghernaout B, Ghernaout D, Saiba A (2010) Algae and cyanotoxins removal by coagulation/flocculation: a review. Desal Water Treat 20:133–143

    CAS  Google Scholar 

  41. Glazer AN (1994) Phycobiliproteins—a family of valuable, widely used fluorophores. J Appl Phycol 6:105–112

    CAS  Google Scholar 

  42. Glazer AN, Stryer L (1983) Fluorescent tandem phycobiliprotein conjugates. Emission wavelength shifting by energy transfer. Biophys J 43:383–386

    PubMed Central  CAS  PubMed  Google Scholar 

  43. Grobbelaar JU (2003) Quality control and assurance: crucial for the sustainability of the applied phycology industry. J Appl Phycol 15:209–215

    CAS  Google Scholar 

  44. Grung M, Liaaen-Jensen S (1993) Algal carotenoids 52; secondary carotenoids of algae 3; carotenoids in a natural bloom of Euglena sanguinea. Biochem Systemat Ecolol 21:757–763

    CAS  Google Scholar 

  45. Ha S-Y, Kim Y-N, Park M-O, Kang S-H, Kim H-C, Shin KH (2012) Production of mycosporine-like amino acids of in situ phytoplankton community in Kongsfjorden, Svalbard arctic. J Photochem Photobiol B114:1–14

    Google Scholar 

  46. HABHRCA (1998) Harmful algal blooms and Hypoxia Research and Control Act of 1998. US Congress, Washington

    Google Scholar 

  47. Hejazi MA, Holwerda E, Wijffels RH (2004) Milking microalga Dunaliella salina for beta-carotene production in two-phase bioreactors. Biotechnol Bioeng 85:475–481

    CAS  PubMed  Google Scholar 

  48. Hejazi MA, Wijffels RH (2004) Milking of microalgae. Trends Biotechnol 22:189–194

    CAS  PubMed  Google Scholar 

  49. Holdt SL, Kraan S (2011) Bioactive compounds in seaweed; functional food applications and legislation. J Appl Phycol 23:543–597

    CAS  Google Scholar 

  50. Hu Z, Zheng Y, Yan F, Xiao B, Liu S (2013) Bio-oil production through pyrolysis of blue-green algae blooms (BGAB): product distribution and bio-oil characterization. Energy 52:119–125

    CAS  Google Scholar 

  51. Huesemann MH, Benemann JR (2009) Biofuels from microalgae: review of products, processes and potential, with special focus on Dunaliella sp. In: Ben-Amotz A, Polle JEW, Subba Rao DV (eds) The alga Dunaliella: biodiversity, physiology, genomics, and biotechnology. Science, New Hampshire, pp 445–474

    Google Scholar 

  52. Jeffryes C, Campbell J, Li H, Jiao J, Rorrer G (2011) The potential of diatom nanobiotechnology for applications in solar cells, batteries, and electroluminescent devices. Energy Env Sci 4:3930–3941

    CAS  Google Scholar 

  53. Ibañez E, Cifuentes A (2013) Benefits of using algae as natural sources of functional ingredients. J Sci Food Agricult 93:703–709

    Google Scholar 

  54. Karsten U, Maier J, Garcia-Pichel F (1998) Seasonality in UV-absorbing compounds of cyanobacterial mat communities from an intertidal mangrove flat. Aquat Microbl Ecol 16:37–44

    Google Scholar 

  55. Kataoka K, Muta T, Yamazaki S, Takeshige K (2002) Activation of macrophages by linear (1→3)-beta-d-glucans. Implications for the recognition of fungi by innate immunity. J Biol Chem 277:36825–36831

    CAS  PubMed  Google Scholar 

  56. Kim CH, Kim B-H, Yang KS (2012) TiO2 nanoparticles loaded on graphene/carbon composite nanofibers by electrospinning for increased photocatalysis. Carbon 50:2472–2481

    CAS  Google Scholar 

  57. Kim JK, Kraemer GP, Yarish C (2014) Field scale evaluation of seaweed aquaculture as a nutrient bioextraction strategy in Long Island Sound and the Bronx River Estuary. Aquaculture 433:148–156

    CAS  Google Scholar 

  58. Kitsiou D, Karydis M (2011) Coastal marine eutrophication assessment: a review on data analysis. Environ Internat 37:778–801

    Google Scholar 

  59. Klock J-H, Wieland A, Seifert R, Michaelis W (2007) Extracellular polymeric substances (EPS) from cyanobacterialmats: characterization and isolation method optimization. Mar Biol 152:1077–1085

    CAS  Google Scholar 

  60. Kuo CT (2010) Harvesting natural algal blooms for concurrent biofuel production and hypoxia mitigation. MS Thesis, University of Illinois at Urbana-Champaign

  61. Latimer JS, Tedesco MA, Swanson RL, Yarish C, Stacey PE, Garza C (2014) Long island sound: prospects for the urban sea. Springer, New York, 558 pp

    Google Scholar 

  62. Lehmann J, Joseph S (eds) (2009) Earthscan. UK, London

    Google Scholar 

  63. Leonard C (2011) Global beauty industry trends 2011, Skin Inc. http://www.skininc.com/spabusiness/trends/126516783.html. Accessed 3 Sept 2014 http://www.skininc.com/magazine/

  64. Li Y, Horsman M, Wu N, Lan CQ, Dubios-Calero N (2008) Biofuels from microalgae. Biotechnol Prog 24:815–820

    CAS  PubMed  Google Scholar 

  65. Li R, Zhong Z, Jin B, Zheng A (2012) Selection of temperature for bio-oil production from pyrolysis of algae from lake blooms. Energy Fuels 26:2996–3002

    CAS  Google Scholar 

  66. Liu Z, Häder D-P, Sommaruga R (2004) Occurrence of mycosporine-like amino acids (MAAs) in the bloom-forming cyanobacterium Microcystis aeruginosa. J Plankton Res 26:963–966

    CAS  Google Scholar 

  67. Łopaciuk A, Łoboda M (2013) Global beauty industry trends in the 21st century. Management, knowledge and learning international conference 2013. Active Citizenship by Knowledge Management & Innovation. http://www.toknowpress.net/ISBN/978-961-6914-02-4/papers/ML13-365.pdf. . Accessed 3 Sept 2014

  68. Lopez PJ, Desclés J, Allen AE, Bowler C (2005) Prospects in diatom research. Curr Opin Biotechnol 16:180–186

    CAS  PubMed  Google Scholar 

  69. Maddi B, Viamajala S, Varanasi S (2011) Comparative study of pyrolysis of algal biomass from natural lake blooms with lignocellulosic biomass. Biores Technol 102:11018–11026

    CAS  Google Scholar 

  70. Mahadevan A, D’Asaro E, Lee C, Perry MJ (2012) Eddy-driven stratification initiates North Atlantic spring phytoplankton blooms. Science 337:54–58

    CAS  PubMed  Google Scholar 

  71. Maier T, Korting HC (2005) Sunscreens—which and what for? Skin Pharmacol Physiol 18:253–262

    CAS  PubMed  Google Scholar 

  72. Martin JH (1990) Glacial-interglacial CO2 changes: the iron hypothesis. Paleoceanography 5:1–13

    Google Scholar 

  73. Mata TM, Martins AA, Caetano N (2009) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232

    Google Scholar 

  74. Matsui K, Nazifi E, Kunita S, Wada N, Matsugo S, Sakamoto T (2011) Novel glycosylated mycosporine-like amino acids with radical scavenging activity from the cyanobacterium Nostoc commune. J Photochem Photobiol B 105:81–89

  75. Metting B (1996) Biodiversity and application of microalgae. J Ind Microbiol 17:477–489

    CAS  Google Scholar 

  76. Milledge JJ, Heaven S (2013) A review of the harvesting of micro-algae for biofuel production. Rev Env Sci Biotech 12:165–178

    Google Scholar 

  77. Mishra SK, Shrivastav A, Mishra S (2010) Effect of preservatives for food grade C-phycoerythrin isolated from marine cyanobacteria Pseudanabaena sp. Int J Biol Macromol 47:597–602

    CAS  PubMed  Google Scholar 

  78. Mishra SK, Shrivastav A, Mishra S (2011) Preparation of highly purified C-phycoerythrin from marine cyanobacterium Pseudanabaena sp. Prot Express Purif 80:234–238

    CAS  Google Scholar 

  79. Misonou T, Saitoh J, Oshiba S, Tokitomo Y, Maegawa M, Inoue Y, Hori H, Sakurai T (2003) UV absorbing substance in the red alga Porphyra yezoensis(Bangiales, Rhodophyta) blocks thymine photodimer production. Mar Biotechnol 5:194–200

    CAS  PubMed  Google Scholar 

  80. Mulbry W, Kondrad KP (2010) Scrubbing the bay: nutrient removal using small algal turf scrubbers on Chesapeake Bay tributaries. Ecol Eng 36:536–541

    Google Scholar 

  81. Mulbry W, Kondrad S, Pizarro C, Kebede-Westhead E (2008) Treatment of dairy manure effluent using freshwater algae: algal productivity and recovery of manure nutrients using pilot-scale algal turf scrubbers. Biores Technol 99:8137–8142

    CAS  Google Scholar 

  82. Mulbry W, Kondrad S, Pizarro P (2006) Biofertilizers from algal treatment of dairy and swine manure effluents: characterization of algal biomass as slow release fertilizer. J Veg Sci 12:107–125

    Google Scholar 

  83. Mushir S, Fatma T (2011) Ultraviolet radiation-absorbing mycosporine-like amino acids in cyanobacterium Aulosira fertilissima: environmental perspective and characterization. Curr Res J Biol Sci 3:165–171

    CAS  Google Scholar 

  84. Nakamura H, Kobayashi J, Hirata Y (1982) Separation of mycosporine-like amino acids in marine organisms using reverse-phase high performance liquid chromatography. J Chromatogr 250:113–118

    CAS  Google Scholar 

  85. Nakashima H, Ohshiro Y, Miyano N, Yamamoto N, Ichikawa S, Kondo H, Takeda M, Sakagami H (1994) Synergistic inhibition of human immunodeficiency virus type 1 (HIV-1) replication in vitro by sulphated paramylon and 3′-azido-2′,3′-dideoxythymidine (AZT). Lett Appl Microbiol 18:24–16

    CAS  Google Scholar 

  86. Neale PJ, Banaszak AT, Jarriel CR (1998) Ultraviolet sunscreens in Gymnodinium sanguineum (Dinophyceae): mycosporine-like amino acids protect against inhibition of photosynthesis. J Phycol 34:928–938

    CAS  Google Scholar 

  87. Nichols DS, Nichols PD, Sullivan CW (1993) Fatty acid, sterol and hydrocarbon composition of Antarctic sea ice diatom communities during the spring bloom in McMurdo Sound. Antarctic Sci 5:271–278

    Google Scholar 

  88. NOAA (National Oceanic and Atmospheric Administration) (2014) Economic impacts of harmful algal blooms. http://www.cop.noaa.gov/stressors/extremeevents/hab/current/econimpact_08.pdf. Accessed 3 Sept 2014

  89. Oi VT, Glazer AN, Stryer L (1982) Fluorescent phycobiliprotein conjugates for analyses of cells and molecules. J Cell Biol 93:981–986

    CAS  PubMed  Google Scholar 

  90. Olaizola M (2003) Commercial development of microalgal biotechnology: from the test tube to the marketplace. Biomol Eng 20:459–466

    CAS  PubMed  Google Scholar 

  91. O’Neil JM, Davis TW, Burford MA, Gobler CJ (2012) The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14:313–334

    Google Scholar 

  92. Oren A, Gunde-Cimerman N (2007) Mycosporines and mycosporine-like amino acids: UV protectants or multipurpose secondary metabolites? FEMS Microbiol Lett 269:1–10

    CAS  PubMed  Google Scholar 

  93. Oren A (1997) Mycosporine-like amino acids as osmotic solutes in a community of halophilic cyanobacteria. Geomicrobiol J 14:231–240

    CAS  Google Scholar 

  94. Paerl HW, Tucker J, Bland PT (1983) Carotenoid enhancement and its role in maintaining blue-green algal (Microcystis aeruginosa) surface blooms. Limnol Oceanogr 28:847–857

    CAS  Google Scholar 

  95. Pahl S, Lee A, Kalaitzidis T, Ashman P, Sathe S, Lewis D (2013) Harvesting, thickening and dewatering microalgae biomass algae for biofuels and energy. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, pp 165–185

    Google Scholar 

  96. Patel A, Pawar R, Mishra S, Sonawane S, Ghosh PK (2004) Kinetic studies on thermal denaturation of C-phycocyanin. Ind J Biochem Biophys 41:254–257

    CAS  Google Scholar 

  97. Pereira P, Onodera H, Andrinolo D, Franca S, Araújo F, Lagos N, Oshima Y (2008) Paralytic shellfish toxins in the freshwater cyanobacterium Aphanizomenon flos-aquae, isolated from Montargil reservoir, Portugal. Toxicon 8:1689–1702

    Google Scholar 

  98. Pisal DS, Lele SS (2005) Carotenoid production from microalga, Dunaliella salina. Ind J Biotechnol 4:476–483

  99. Ploutno A, Carmeli S (2008) Prenostodione, a novel UV-absorbing metabolite from a natural bloom of the cyanobacterium Nostoc species. J Nat Prod 64:544–545

    Google Scholar 

  100. Pragya N, Pandey KK, Sahoo PK (2013) A review on harvesting, oil extraction and biofuels production technologies from microalgae. Renew Sustain Energy Rev 24:159–171

    CAS  Google Scholar 

  101. Quesada A, Vincent WF, Lean DRS (1999) Community and pigment structure of Arctic cyanobacterial assemblages: the occurrence and distribution of UV-absorbing compounds. FEMS Microbiol Ecol 28:315–323

    CAS  Google Scholar 

  102. Quesada LA, De-Lustig ES, Marechal LR, Belocopitow E (1976) Antitumor activity of paramylon on sarcoma-180 in mice. Gan Gann 67:455–459

    CAS  Google Scholar 

  103. Radmer RJ (1996) Algal diversity and commercial algal products. Mar Biotechnol 46:263–270

    Google Scholar 

  104. Raiswell R, Benning LG, Tranter M, Tulaczyk S (2008) Bioavailable iron in the Southern Ocean: the significance of the iceberg conveyor belt. Geochem Transact 9:7–15

    Google Scholar 

  105. Raja R, Hemaiswarya S, Rengasamy R (2007) Exploitation of Dunaliella for β-carotene production. Appl Microbiol Biotechnol 74:517–523

    CAS  PubMed  Google Scholar 

  106. Rastogi RP, Richa SSP, HäderD-P SRP (2010) Mycosporine-like amino acids profile and their activity under PAR and UVR in a hot-spring cyanobacterium Scytonema sp. HKAR-3. Aust J Bot 58:286–293

    CAS  Google Scholar 

  107. Ribeiro BD, Berreto DW, Coelho AAZ (2011) Technological aspects of β-carotene production. Food Bioprocess Technol 4:693–701

    CAS  Google Scholar 

  108. Richa RRP, Kumari S, Singh KL, Kannuajiya VK, Singh G, Kesheri M, Sinha RP (2011) Biotechnological potential of mycosporine-like amino acids and phycobiliproteins of cyanobacterial origin. Biotechnol Bioinform Bioeng 1:159–171

    Google Scholar 

  109. Rimbau V, Camins A, Romay C, Gonzalez R, Pallas M (1999) Protective effect of C-phycocyanin against kainic acid induced neuronal damage in rat hippocampus. Neurosci Lett 276:75–78

    CAS  PubMed  Google Scholar 

  110. Rock CL (2002) Carotenoids and cervical, breast, ovarian and colorectal cancer. Epidemiology and clinical trials. Pure Appl Chem 74:1451–1459

    CAS  Google Scholar 

  111. Rodríguez-Sánchez R, Ortiz-Butrón R, Blas-Valdivia V, Hernández-García A, Cano-Europa E (2012) Phycobiliproteins or C-phycocyanin of Arthrospira (Spirulina) maxima protect against HgCl2-caused oxidative stress and renal damage. Food Chem 135:2359–2365

    PubMed  Google Scholar 

  112. Roesijadi G, Copping AE, Huesemann MH, Forster J, Benemann JR (2008) Techno-economic feasibility analysis of offshore seaweed farming for bioenergy and biobased products. Battelle Pacific Northwest Division Report, number PNWD-3931

  113. Romay C, Armesto J, Remirez D, González R, Ledon N, García I (1998) Antioxidant and anti-inflammatory properties of C-phycocyanin from blue-green algae. Inflam Res 47:36–41

    CAS  Google Scholar 

  114. Rose JM, Caron DA (2007) Does low temperature constrain the growth rates of heterotrophic protists? Evidence and implications for algal blooms in cold waters. Limnol Oceanogr 52:886–895

    Google Scholar 

  115. Rossi E, Prlic A, Hoffman R (2007) A study of the European cosmetics industry. Final report prepared for the European Commission, Directorate General for Enterprise and Industry

  116. Sangolkar NL, Maske SS, Chakrabarti T (2006) Methods for determining microcystins (peptide hepatotoxins) and microcystin-producing cyanobacteria. Water Res 40:3485–3496

    CAS  PubMed  Google Scholar 

  117. Sayre R (2010) Microalgae: the potential for carbon capture. Bioscience 60:722–727

    Google Scholar 

  118. Sedwick PN, DiTullio GR (1997) Regulation of algal blooms in Antarctic shelf waters by the release of iron from melting sea ice. Geophys Res Lett 24:2515–2518

    CAS  Google Scholar 

  119. Sekar S, Chandramohan M (2008) Phycobiliproteins as a commodity: trends in applied research, patents and commercialization. J Appl Phycol 20:113–136

    Google Scholar 

  120. Shen L, Xu H, Guo X (2012) Satellite remote sensing of harmful algal blooms (HABs) and a potential synthesized framework. Sensors 12:7778–7803

    PubMed Central  PubMed  Google Scholar 

  121. Singh G, Babele PK, Sinha RP, Tyagi MB, Kumar A (2013) Enzymatic and non-enzymatic defense mechanisms against ultraviolet-B radiation in two Anabaena species. Process Biochem 48:796–802

    CAS  Google Scholar 

  122. Singh S, Bhushan KN, Banerjee UC (2005) Bioactive compounds from cyanobacteria and microalgae: an overview. Crit Rev Biotechnol 25:73–95

    CAS  PubMed  Google Scholar 

  123. Singh SP, Häder D-P, Sinha RP (2010) Cyanobacteria and ultraviolet radiation (UVR) stress: mitigation strategies. Age Res Rev 9:79–90

    CAS  Google Scholar 

  124. Singh SP, Kumari S, Rastogi RP, Singh KL, Sinha RP (2008a) Mycosporine-like amino acids (MAAs): chemical structure, biosynthesis and significance as UV-absorbing/screening compounds. Ind J Exp Biol 46:7–17

    CAS  Google Scholar 

  125. Singh SP, Klisch M, Sinha RP, Häder D-P (2008b) Effects of abiotic stressors on synthesis of the mycosporine-like amino acid shinorine in the cyanobacterium Anabaena variabilis PCC 7937. Photochem Photobiol 84:1500–1505

    CAS  PubMed  Google Scholar 

  126. Sinha RP, Ambasht NK, Sinha JP, Häder D-P (2003a) Wavelength dependent induction of a mycosporine-like amino acid in a rice-field cyanobacterium, Nostoc commune: role of inhibitors and salt stress. Photochem Photobiol Sci 2:171–176

    CAS  PubMed  Google Scholar 

  127. Sinha RP, Ambasht NK, Sinha JP, Klisch M, Häder D-P (2003b) UV-B-induced synthesis of mycosporine-like amino acids in three strains of Nodularia (cyanobacteria). J Photochem Photobiol B 71:51–58

    CAS  PubMed  Google Scholar 

  128. Sinha RP, Klisch M, Häder D-P (1999) Induction of a mycosporine-like amino acid (MAA) in the rice-field cyanobacterium Anabaena sp. by UV irradiation. J Photochem Photobiol B 52:59–64

    CAS  Google Scholar 

  129. Smetacek V, Klaas C, Strass VH, Assmy P (2012) Deep carbon export from a southern ocean iron-fertilized diatom bloom. Nature 487:313–319

    CAS  PubMed  Google Scholar 

  130. Smith AS (2011) Harmful algal blooms: action plans for scientific solutions. Committee on Science, Space, and Technology. US Government Printing Office, Washington

    Google Scholar 

  131. Sommaruga R, Chen Y, Liu Z (2009) Multiple strategies of bloom-forming Microcystis to minimize damage by solar ultraviolet radiation in surface waters. Microbiol Ecol 57:667–674

    Google Scholar 

  132. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    CAS  PubMed  Google Scholar 

  133. Subramanian A, Carpenter EJ, Karentz DFalkowski PG (1999) Bio-optical properties of the marine diazotrophic cyanobacteria Trichodesmium spp. I. Absorption and photosynthetic action spectra. Limnol Oceanogr 44:608–617

    Google Scholar 

  134. Sugiyama A, Hata S, Suzuki K, Yoshida E, Nakano R, Mitra S, Arashida R, Yet A (2010) Oral administration of paramylon, a β-1,3-d-glucan isolated from Euglena gracilis Z inhibits development of atopic dermatitis-like skin lesions in NC/Nga mice. J Veter Med Sci 72:755–763

    CAS  Google Scholar 

  135. Takeyama H, Kanamaru A, Yoshino Y, Kakuta H, Kawamura Y, Matsunaga T (1997) Production of antioxidant vitamins, β-carotene, vitamin C, and vitamin E by two-step culture of Euglena gracilis Z. Biotechnol Bioeng 53:185–190

    CAS  PubMed  Google Scholar 

  136. Torres A, Enk CD, Hochberg M, Srebnik M (2006) Porphyra-334, a potential natural source for UVA protective sunscreens. Photochem Photobiol Sci 5:432–435

    CAS  PubMed  Google Scholar 

  137. Veldhuis MJW, Timmermans KR, Croot P, van der Wagt B (2005) Picophytoplankton; a comparative study of their biochemical composition and photosynthetic properties. J Sea Res 53:7–24

    CAS  Google Scholar 

  138. Waters L, Hill RT, Place AR, Hamann MT (2010) The expanding role of marine microbes in pharmaceutical development. Curr Opin Biotechnol 21:780–786

    PubMed Central  CAS  PubMed  Google Scholar 

  139. Whitehead K, Hedges JI (2005) Photodegradation and photosensitization of mycosporine-like amino acids. J Photochem Photobiol B 80:115–121

    CAS  PubMed  Google Scholar 

  140. Woods Hole Oceanographic Institution (2008) Should we fertilize the ocean to reduce greenhouse gasses? Oceanus 46

  141. Wosnitza TMA, Barrantes JG (2006) Utilization of seaweed Ulva sp. in Paracas Bay (Peru): experimenting with compost. J Appl Phycol 18:27–31

    Google Scholar 

  142. Yan Q, Zhao MX, Miao HF, Ruan WQ, Song RT (2010) Coupling of the hydrogen and polyhydroxyalkanoates (PHA) production through anaerobic digestion from Taihu blue algae. Biores Technol 101:4508–4512

    CAS  Google Scholar 

  143. Yun YJ, Hong WG, Kim WJ, Jun Y, Kim BH (2013) A novel method for applying reduced graphene oxide directly to electronic textiles from yarns to fabrics. Adv Materials 25:5701–5705

    CAS  Google Scholar 

  144. Zhong W, Zhang Z, Luo Y, Qiao W, Xiao M, Zhang M (2012) Biogas productivity by co-digesting Taihu blue algae with corn straw as an external carbon source. Bioresour Technol 114:281–286

    CAS  PubMed  Google Scholar 

  145. Zimba PV, Moeller PD, Beauchesne K, Lane HE, Triemer RE (2010) Identification of euglenophycin—a toxin found in certain euglenoids. Toxicon 55:100–104

    CAS  PubMed  Google Scholar 

Download references

This work was supported by Incheon National University and Future Marine Project of Ministry of Oceans and Fisheries.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Taejun Han.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, J.K., Kottuparambil, S., Moh, S.H. et al. Potential applications of nuisance microalgae blooms. J Appl Phycol 27, 1223–1234 (2015). https://doi.org/10.1007/s10811-014-0410-7

Download citation

Keywords

  • Algal blooms
  • HABs
  • Renewable bioresources
  • Biomass