Skip to main content

Advertisement

Log in

Screening metal-dye-tolerant photoautotrophic microbes from textile wastewaters for biohydrogen production

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

In the present study, tolerance of ten microalgal strains isolated from wastewaters of different textile mills in relation to two metals and dyes was studied based on cell growth estimated spectrophotometrically. Three cyanobacterial strains that were found to tolerate both Cr(VI) and Co(II) along with the dyes reactive red 198 (RR 198) and crystal violet (CV) were investigated further for the concentration of various photosynthetic pigments and exopolymer production in the presence of the dyes and metals. All three tolerant species—Nostoc linckia HA-46, Myxosarcina spectabilis HP-43 and Gloeocapsa calcarea HP-45—showed a significantly higher concentration (P < 0.05) of various pigments when the medium was spiked with metals or dyes. Production of extracellular proteins and particularly extracellular polysaccharides by the tolerant strains increased significantly (P < 0.05) in the presence of metals. The effect of dyes was, however, not always statistically significant (P > 0.05). Production of hydrogen by these photoautotrophic microbes was moderate (19–28 nmol h−1 mg−1 dry wt). The best performing strain, N. linckia, when examined further for its hydrogen production potential in the presence of the two dyes and metals, showed significantly higher rates of hydrogen production in the presence of Cr, Co and RR 198. Its hydrogenase activity also followed the same trend. Immobilization of the microbe into alginate beads almost doubled the hydrogen production by the organism in the control as well as in the presence of suitable concentrations of the two metals (10 mg L−1) and dyes (50 mg L−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aguilera A, Amils R (2005) Tolerance to cadmium in Chlamydomonas sp. (Chlorophyta) strains isolated from an extreme acidic environment, the Tinto River (SW, Spain). Aq Toxicol 75:316–329

    Article  CAS  Google Scholar 

  • Arica MY, Bayramoglu G, Yilmaz M, Ince O, Bektas S, Genc O (2004) Biosorption of Hg2+, Cd2+, and Zn2+ by Ca-alginate and immobilized fungus Funalia trogii. J Hazard Mater 109:191–199

    Article  PubMed  Google Scholar 

  • Arora NK, Khare E, Singh S, Maheshwari DK (2010) Effect of Al and heavy metals on enzymes of nitrogen metabolism of fast and slow growing rhizobia under explanta conditions. World J Microbiol Biotechnol 26:811–816

    Article  CAS  Google Scholar 

  • Banerjee M, Kumar A, Kumar HD (1989) Factors regulating nitrogenase activity and hydrogen evolution in AzollaAnabaena symbiosis. Int J Hydrogen Energy 14:871–879

    Article  CAS  Google Scholar 

  • Benemann JR (1998) The technology of biohydrogen. In: Zaborsky O (ed) Bio Hydrogen. Plenum, New York, pp 19–30

    Google Scholar 

  • Bennett A, Bogorad L (1971) Properties of subunits and aggregates of bluegreen algal biliproteins. Biochemistry 10:3625–3634

    Article  CAS  PubMed  Google Scholar 

  • Coolidge FL (2000) Statistics. SAGE Pub, London, p 287

    Google Scholar 

  • De Philippis R, Vinenzini M (1998) Extracellular polysaccharides from cyanobacteria and their possible applications. FEMS Microb Rev 22:151–175

    Article  Google Scholar 

  • Desikachary TV (1959) Cyanophyta. Indian Council of Agricultural Research, New Delhi, p 686

    Google Scholar 

  • Foster PL (1982) Species association and metal contents of algae from rivers polluted with heavy metals. Freshwat Biol 12:17–39

    Article  CAS  Google Scholar 

  • Ghirardi ML, Kosourov S, Tsygankov A, Rubin A, Seibert M (2002) Cyclic photobiological algal H2-production. In: Proceedings of the 2002 U.S. DOE Hydrogen Program Review. NREL/CP-610-32405 p 1–12

  • Ghirardi ML, Dubini A, Yu J, Maness PC (2009) Photobiological hydrogen-producing systems. Chem Soc Rev 38:52–61

    Article  CAS  PubMed  Google Scholar 

  • Goyal N, Jain SC, Banerjee UC (2003) Comparative studies on the microbial adsorption of heavy metals. Advan Environ Res 7:311–319

    Article  CAS  Google Scholar 

  • Greger M, Orgen E (1991) Direct and indirect effects of Cd2+ on photosynthesis in sugar beet (Beta vulgaris). Plant Physiol 83:129–135

    Article  CAS  Google Scholar 

  • Hansel A, Lindblad P (1998) Mini-review: towards optimization of cyanobacteria as biotechnologically relevant producers of molecular hydrogen, a clean and renewable energy source. App Environ Microbiol 50:153–160

    CAS  Google Scholar 

  • Hardy RWF, Holsten RD, Jackson EK, Burns RC (1968) The acetylene-ethylene assay for N2 fixation: laboratory and field evaluation. Plant Physiol 43:1185–1207

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Heng LY, Jusoh K, Ling CHM, Idris M (2004) Toxicity of single and combination of lead and cadmium to the cyanobacterium Anabaena flos-aquae. Bull Environ Contam Toxicol 42:373–379

    Article  Google Scholar 

  • Horcsik Z, Olah V, Balogh A, Meszaros I, Simon L, Lakatos G (2006) Effect of chromium(VI) on growth, element and photosynthetic pigment composition of Chlorella pyrenoidosa. Acta Biologica Szegediensis 50:19–23

    Google Scholar 

  • Hu TL, Wu SC (2001) Assessment of the effect of azo dye RP2B on the growth of a nitrogen fixing cyanobacterium—Anabaena sp. Bioresour Technol 77:93–95

    Article  CAS  PubMed  Google Scholar 

  • Jensen A (1978) Chlorophylls and carotenoids. In: Hellebust JA, Craige JS (eds) Handbook of phycological methods, physiological and biochemical methods. Cambridge University Press, Cambridge, pp 59–70

    Google Scholar 

  • Karube I, Ikemoto H, Kajiwara K, Tamiya E, Matsuoka H (1986) Photochemical energy conversion using immobilized blue-green algae. J Biotechnol 4:73–80

    Article  CAS  Google Scholar 

  • Katz SA, Salem H (1993) The toxicology of chromium with respect to its chemical speciation: a review. J Appl Toxicol 13:217–224

    Article  CAS  PubMed  Google Scholar 

  • Kaushik BD (1987) Laboratory methods for blue-green algae. Associated Publishing Company, New Delhi, p 171

    Google Scholar 

  • Kaushik A, Anjana K (2011) Biohydrogen production by Lyngbya perelegans: influence of physico-chemical environment. Biomass Bioenergy 35:1041–1045

    Article  CAS  Google Scholar 

  • Kiran B, Kaushik A, Kaushik CP (2008a) Metal-salt co-tolerance and metal removal by indigenous cyanobacterial strains. Process Biochem 43:598–604

    Article  CAS  Google Scholar 

  • Kiran B, Nisha R, Kaushik A (2008b) Chromium(VI) tolerance in two halotolerant strains of Nostoc. J Environ Biol 29:155–158

    CAS  PubMed  Google Scholar 

  • Kosourov NS, Seibert M (2009) Hydrogen photoproduction by nutrient-deprived Chlamydomonas reinhardtii cells immobilized within thin alginate films under aerobic and anaerobic conditions. Biotechnol Bioeng 102:50–58

    Article  CAS  PubMed  Google Scholar 

  • Kosourov S, Tsygankov A, Seibert M, Ghirardi ML (2002) Sustained hydrogen photoproduction by Chlamydomonas reinhardtii: effects of culture parameters. Biotechn Bioeng 78:731–740

    Article  CAS  Google Scholar 

  • Kumar D, Kumar HD (1992) Hydrogen production by several cyanobacteria. Int J Hydrogen Energy 17:847–852

    Article  CAS  Google Scholar 

  • Leigh JS Jr, Dutton PL (1972) The primary electron acceptor in photosynthesis. Biochem Biophys Res Comm 46:414–421

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Larr AL, Randal RJ (1951) Protein measurement with Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • McKinney G (1941) Absorption of light by chlorophyll solutions. J Biol Chem 140:315–322

    Google Scholar 

  • Miura Y, Matsuoka S, Miyamoto K, Satoh C (1992) Stably sustained hydrogen production with high molar yield through a combination of a marine green alga and a photosynthetic bacterium. Biosci Biotech Biochem 56:751–754

    Article  CAS  Google Scholar 

  • Mona S, Kaushik A, Kaushik CP (2011) Hydrogen production and metal-dye bioremoval by a Nostoc linckia strain isolated from textile mill oxidation pond. Bioresour Technol 102:3200–3205

    Article  CAS  PubMed  Google Scholar 

  • Nieboer E, Jusys AA (1988) Biological chemistry of chromium. In: Nriagu JO, Nieboer (eds) Chromium in natural and human environments. Wiley, New York, pp 21–81

    Google Scholar 

  • Pandey A, Pandey VD (2013) Evaluation of filamentous cyanobacteria for phycobiliproteins content and composition. Ind J Fund Appl Life Sci 3(2):222–227

    Google Scholar 

  • Pearce CI, Lloyd JR, Guthric JT (2003) The removal of colour from textile wastewater using whole bacterial cell: a review. Dyes Pigments 58:179–196

    Article  CAS  Google Scholar 

  • Ramakrishnan M, Nagarajan S (2009) Utilization of waste biomass for the removal of basic dye from water. World Appl Sci J 5:114–121

    Google Scholar 

  • Rao KK, Hall DO (1996) Hydrogen production by cyanobacteria: potential problems and prospects. J Mar Biotech 4:10–15

    CAS  Google Scholar 

  • Salguero A, Benito M, Vigara J, Vega JM, Vilchez C, León R (2003) Carotenoids as protective response against oxidative damage in Dunaliella bardawil. Biomol Eng 20:249–253

    Article  CAS  PubMed  Google Scholar 

  • Sarker S, Pandey KD, Kashyap AK (1992) Hydrogen photoproduction by filamentous non-heterocystous cyanobacterium Plectonema boryanna and simultaneous release of ammonia. Int J Hydrogen Energy 17:689–694

    Article  Google Scholar 

  • Seifter S, Dayton S, Novic B, Muntusylar E (1959) Estimation of glycogen with anthrone reagent. Arch Biochem 25:191–200

    Google Scholar 

  • Shah V, Garg N, Madamwar D (2001) Ultrastructure of the fresh water cyanobacterium Anabaena variabilis SPU 003 and its application for oxygen-free hydrogen production. FEMS Microb Lett 194:71–75

    Article  CAS  Google Scholar 

  • Sharma M, Kaushik A, Somvir BK, Kamra A (2008) Sequestration of chromium by exopolysaccharides of Nostoc and Gloeocapsa from dilute aqueous solutions. J Hazard Mater 157:315–318

    Article  CAS  PubMed  Google Scholar 

  • Sharma M, Rani N, Kamra A, Bala K, Kaushik A (2009) Growth, exopolymer production and metal bioremoval by Nostoc punctiforme in Na+ and Cr(VI) spiked medium. J Environ Res Dev 4:372–379

    CAS  Google Scholar 

  • Shukla SP, Kumar AT, Tiwari DN, Mishra BP, Gupta GS (1994) Assessment of the effect of the toxicity of a textile dye on Nostoc muscorum ISU, a diazotrophic cyanobacterium. Environ Poll 84:23–25

    Article  CAS  Google Scholar 

  • Stainer RY, Dousoroff M, Omston IW (1971) General Microbiol. Macmillan, London, p 686

    Google Scholar 

  • Stratton GW, Corke CT (1979) The effect of Ni on the growth, photosynthesis and nitrogenase activity of Anabaena inaequalis. Can J Microbiol 25:1094–1099

    Article  CAS  PubMed  Google Scholar 

  • Takamura N, Kasai F, Watanabe MM (1989) Effects of Cu, Cd, and Zn on photosynthesis of freshwater benthic algae. J Appl Phycol 1:39–52

    Article  CAS  Google Scholar 

  • Vajpayee P, Tripathi RD, Rai UN, Ali MB, Singh SN (2000) Chromium accumulation reduces chlorophyll biosynthesis, nitrate reductase activity and protein content of Nymphaea alba. Chemosphere 41:1075–1082

    Article  CAS  PubMed  Google Scholar 

  • Whitton BA (1970) Toxicity of heavy metals to Chlorophyta from running waters. Arch Microbiol 72:353–360

    CAS  Google Scholar 

  • Yruela I, Alfonso M, Baron M, Picorel R (2000) Copper effect on the protein composition of photosystem II. Plant Physiol 110:551–557

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was funded by a grant from University Grants Commission (UGC-SAP-DRS-II), New Delhi, and the authors also acknowledge the financial assistance from Ms. Mona Sharma by CSIR, New Delhi, in the form of Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anubha Kaushik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mona, S., Kaushik, A. Screening metal-dye-tolerant photoautotrophic microbes from textile wastewaters for biohydrogen production. J Appl Phycol 27, 1185–1194 (2015). https://doi.org/10.1007/s10811-014-0396-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-014-0396-1

Keywords

Navigation