Skip to main content

Mitochondrial phylogenomics reveals a close relationship between Petalonia fascia (Scytosiphonaceae, Phaeophyceae) and Ectocarpus siliculosus

Abstract

The complete mitochondrial (mt) genome sequence of the brown alga, Petalonia fascia (O.F. Müller) Kuntze was determined and analyzed in this study. The 38,053-bp mt genome contains 68 genes, including 3 ribosomal RNA genes, 25 transfer RNA genes, 35 protein-coding genes, and 5 unidentified open reading frames (ORFs). The noncoding DNA represents 6.50 % of the total genome. The average size of intergenic spacers is 44.2 nucleotides with a range of 0 to 389 nucleotides. The nad11 gene in P. fascia, unlike other coding genes with a methionine (ATG) start codon, commences with a typical TTG codon. The P. fascia mt genome exhibits novel genome organization and gene arrangement, which are similar to those of Ectocarpus siliculosus. Phylogenetic analyses based on 35 protein-coding genes reveal that P. fascia has a close evolutionary relationship with E. siliculosus compared with other brown algae analyzed. The molecular data presented provide a useful tool for classification, evolutionary as well as population genetic studies in Scytosiphonaceae.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bittner L, Payri CE, Couloux A, Cruaud C, de Reviers B, Rousseau F (2008) Molecular phylogeny of the Dictyotales and their position within the brown algae, based on nuclear, plastidial and mitochondrial sequence data. Mol Phylogenet Evol 49:211–226

    Article  CAS  PubMed  Google Scholar 

  • Boore JL (1999) Survey and summary animal mitochondrial genomes. Nucleic Acids Res 27:1767–1780

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Burger G, Gray MW, Lang BF (2003) Mitochondrial genomes: anything goes. Trends Genet 19:709–716

  • Charrier B, Le Bail A, de Reviers B (2012) Plant Proteus: brown algal morphological plasticity and underlying developmental mechanisms. Trends Plant Sci 17:468–477

    Article  CAS  PubMed  Google Scholar 

  • Cheng S, Chang SY, Gravitt P, Respess R (1994) Long PCR. Nature 369:684–685

    Article  CAS  PubMed  Google Scholar 

  • Cho GY, Yoon HS, Choi HG, Kogame K, Boo SM (2001) Phylogeny of the family Scytosiphonaceae (Phaeophyta) from Korea based on sequences of plastid-encoded RuBisCo spacer region. Algae 16:145–150

    Google Scholar 

  • Cho GY, Yang EC, Lee SH, Boo SM (2002) First description of Petalonia zosterifolia and Scytosiphon gracilis (Scytosiphonaceae, Phaeophyceae) from Korea with special reference to nrDNA ITS sequence comparisons. Algae 17:135–144

    Article  Google Scholar 

  • Cho GY, Kogame K, Boo SM (2006) Molecular phylogeny of the family Scytosiphonaceae (Phaeophyceae). Algae 21:175–183

    Article  Google Scholar 

  • Cummings MP, Otto SP, Wakeley J (1995) Sampling properties of DNA sequence data in phylogenetic analysis. Mol Biol Evol 12:814–822

    CAS  PubMed  Google Scholar 

  • Draisma SGA, Prud’Homme van Reine WF, Stam WT, Olsen JL (2001) A reassessment of phylogenetic relationships within the Phaeophyceae based on RUBISCO large subunit and ribosomal DNA sequences. J Phycol 37:586–603

  • Draisma SGA, Ballesteros E, Rousseau F, Thibaut T (2010) DNA sequence data demonstrate the polyphyly of the genus Cystoseira and other Sargassaceae genera (Phaeophyceae). J Phycol 46:1329–1345

    Article  Google Scholar 

  • Gray MW, Burger G, Lang BF (2001) The origin and early evolution of mitochondria. Genome Biol 2:1018.1–1018.5

    Article  Google Scholar 

  • Guiry MD, Guiry GM (2014) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org; searched on 8 July 2014

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Kogame K, Horiguchi T, Masuda M (1999) Phylogeny of the order Scytosiphonales (Phaeophyceae) based on DNA sequence of rbcL, partial rbcS, and partial LSU nrDNA. Phycologia 38:496–502

    Article  Google Scholar 

  • Kogame K, Uwai S, Shimada S, Masuda M (2005) A study of sexual and asexual populations of Scytosiphon lomentaria (Scytosiphonaceae, Phaeophyceae) in Hokkaido, northern Japan, using molecular marker. Eur J Phycol 40:313–322

    Article  CAS  Google Scholar 

  • Kogame K, Kurihara A, Cho GY, Lee KM, Sherwood AR, Boo SM (2011) Petalonia tatewakii sp. nov. (Scytosiphonaceae, Phaeophyceae) from the Hawaiian Islands. Phycologia 50:563–573

    Article  Google Scholar 

  • Lang BF, Gray MW, Burger G (1999) Mitochondrial genome evolution and the origin of eukaryotes. Annu Rev Genet 33:351–397

    Article  CAS  PubMed  Google Scholar 

  • Li TY, Qu JQ, Feng YJ, Liu C, Chi S, Liu T (2014) Complete mitochondrial genome of Undaria pinnatifida (Alariaceae, Laminariales, Phaeophyceae). Mitochondrial DNA. doi:10.3109/19401736.2013.865172

    Google Scholar 

  • Liu F, Pang SJ (2014) Complete mitochondrial genome of the invasive brown alga Sargassum muticum (Sargassaceae, Phaeophyceae). Mitochondrial DNA. doi:10.3109/19401736.2014.933333

    Google Scholar 

  • Liu F, Pang SJ, Li X, Li J (2014a) Complete mitochondrial genome of the brown alga Sargassum horneri (Sargassaceae, Phaeophyceae): genome organization and phylogenetic analyses. J Appl Phycol. doi:10.1007/s10811-014-0295-5

    PubMed Central  PubMed  Google Scholar 

  • Liu F, Pang SJ, Luo MB (2014b) Complete mitochondrial genome of the brown alga Sargassum fusiforme (Sargassaceae, Phaeophyceae): genome architecture and taxonomic consideration. Mitochondrial DNA. doi:10.3109/19401736.2014.936417

    Google Scholar 

  • Lohse M, Drechsel O, Kahlau S, Bock R (2013) Organellar Genome DRAW—a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucl Acids Res. doi:10.1093/nar/gkt289

    PubMed Central  PubMed  Google Scholar 

  • Oudot-Le Secq M-P, Fontaine J-M, Rousvoal S, Kloareg B, Loiseaux-De Goër S (2001) The complete sequence of a brown algal mitochondrial genome, the Ectocarpale Pylaiella littoralis (L.) Kjellm. J Mol Evol 53:80–88

    Article  CAS  PubMed  Google Scholar 

  • Oudot-Le Secq M-P, Kloareg B, Loiseaux-De Goër S (2002) The mitochondrial genome of the brown alga Laminaria digitata: a comparative analysis. Eur J Phycol 37:163–172

    Article  Google Scholar 

  • Oudot-Le Secq M-P, Loiseaux-De Goër S, Stam WT, Olsen JL (2006) Complete mitochondrial genome of the three brown algae (Heterokonta: Phaeophyceae) Dictyota dichotoma, Fucus vesiculosus and Desmarestia viridis. Curr Genet 49:47–58

    Article  CAS  PubMed  Google Scholar 

  • Qu JQ, Liu C, Wang XM, Zhang ZB, Chi S, Liu T (2014) Complete mitochondrial genome of Costaria costata shows conservative evolution in Laminariales. Mitochondrial DNA. doi:10.3109/19401736.2013.863290

    Google Scholar 

  • Rousseau F, de Reviers B (1999) Circumscription of the order Ectocarpales: bibliographical synthesis and molecular evidence. Cryptogam Algol 20:5–18

    Article  Google Scholar 

  • Rousseau F, Burrowes R, Peters AF, Kuhlenkamp R, de Reviers B (2001) A comprehensive phylogeny of the Phaeophyceae based on nrDNA sequences resolves the earliest divergences. C R Acad Sci III 324:305–319

  • Schattner P, Brooks AN, Lowe TM (2005) The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucl Acids Res 33:686–689

    Article  Google Scholar 

  • Silberfeld T, Leigh JW, Verbruggen H, Cruaud C, de Reviers B, Rousseau F (2010) A multi-locus time-calibrated phylogeny of the brown algae (Heterokonta, Ochrophyta, Phaeophyceae): Investigating the evolutionary nature of the “brown algal crown radiation”. Mol Phylogenet Evol 56:659–674

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 25:4876–4882

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Toste MF, Parente MI, Neto AI, Fletcher RL (2003) Life history of Colpomenia sinuosa (Scytosiphonaceae, Phaeophyceae) in the Azores. J Phycol 39:1268–1274

    Article  Google Scholar 

  • Tseng CK (2009) Seaweeds in Yellow Sea and Bohai Sea of China. Science Press, Beijing, pp 367–372, (in Chinese)

    Google Scholar 

  • Turmel M, Otis C, Lemieux C (2003) The mitochondrial genome of Chara vulgaris: insights into the mitochondrial DNA architecture of the last common ancestor of green algae and land plants. Plant Cell 15:1888–1903

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Whelan S, Goldman N (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18:691–699

    Article  CAS  PubMed  Google Scholar 

  • Wyman SK, Jansen RK, Boore JL (2004) Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20:3252–3255

    Article  CAS  PubMed  Google Scholar 

  • Yotsukura N, Shimizu T, Katayama T, Druehl LD (2010) Mitochondrial DNA sequence variation of four Saccharina species (Laminariales, Phaeophyceae) growing in Japan. J Appl Phycol 22:243–251

    Article  CAS  Google Scholar 

  • Zhang J, Wang XM, Liu C, Jin YM, Liu T (2013) The complete mitochondrial genomes of two brown algae (Laminariales, Phaeophyceae) and phylogenetic analysis within Laminaria. J Appl Phycol 25:1247–1253

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Claire M.M. Gachon and two anonymous reviewers for their helpful advice, and Jiaqi Wang, Xige Jiang, and Changbin Sun for their assistance in algal collection. This investigation was supported by the National Natural Science Foundation of China (No. 41206146), the 863 Hi-Tech Research and Development Program of China (No. 2012AA10A413), the Scientific Research Foundation for Outstanding Young Scientists of Shandong Province (No. BS2013HZ004), the Open Research Fund of Key Laboratory of Integrated Marine Monitoring and Applied Technologies for Harmful Algal Blooms, State Oceanic Administration (No. MATHAB201408), and the Open Research Fund of Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation and Utilization, Ministry of Agriculture, P. R. China (No. K201311).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Liu or Shaojun Pang.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Pang, S. Mitochondrial phylogenomics reveals a close relationship between Petalonia fascia (Scytosiphonaceae, Phaeophyceae) and Ectocarpus siliculosus . J Appl Phycol 27, 1021–1028 (2015). https://doi.org/10.1007/s10811-014-0386-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-014-0386-3

Keywords