Skip to main content
Log in

Evaluation of the performance of an algal bioreactor for silver nanoparticle production

Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Upscaling of metal nanoparticle production through green pathways requires selection of a suitable candidate species, an appropriate and cost-effective bioreactor for the conversion of ionic form of metals to nanomaterials. With this perspective, the potential of a freshwater Chlorococcalean alga, Chlorella vulgaris, was investigated for silver nanoparticle production in a continuously stirred non-aerated culture assembly. The findings reveal that the alga can reduce the silver ions and remains viable at 10−3 M silver nitrate concentration. The nanoparticles produced were of polydisperse type with size range of 8–20 nm and mean size of 12.62 nm. Zeta potential of the particles was −16.48 mV indicating a moderate stability of nanoparticles in the environment. Fourier transform spectroscopy of the treated biomass showed the presence of carboxylic, alcohol, phenol, and hydroxyl groups other than aromatic functional groups. X-ray diffraction study showed the 2θ values 38.38° and 45.28° which correspond to (111) and (200) planes of face-centered cubic (fcc) crystal structure of metallic silver with d-spacing (A°) of 2.343. Overall information reported here will help in gaining a better insight into the potential of algae as a suitable material for green chemistry of metal nanoparticle synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Albrecht MA, Evan IW, Raston CL (2006) Green chemistry and the health implications of nanoparticles. Green Chem 8:417–432

    Article  CAS  Google Scholar 

  • Ali DM, Sasikala M, Gunasekaran M, Thajuddin N (2011) Biosynthesis and characterization of silver nanoparticles using cyanobacterium, Oscillatoria willei NTDM01. Dig J Nanomater Biostruct 6:385–390

    Google Scholar 

  • Allen MM (1968) Simple conditions for growth of unicellular blue green algae on plates. J Phycol 4:1–3

    Article  CAS  Google Scholar 

  • Chandrasekharan N, Kamat PV (2000) Improving the photo-electrochemical performance of nanostructured TiO2 films by adsorption of gold nanoparticles. J Phys Chem B 104:10851–10857

    Article  CAS  Google Scholar 

  • Dahoumane SA, Djediat C, Yepremian C, Coute A, Fievet F, Coradin T, Brayner R (2010) Species selection for the design of gold nanobioreactor by photosynthetic organisms. J Nanoparticle Res 14:883. doi:10.1007/s11051-012-0883-8

    Article  Google Scholar 

  • Gong P, Li H, He X, Wang K, Hu J, Tan W, Tan S, Zhang XY (2007) Preparation and antibacterial activity of Ag nanoparticles. Nanotechnology 18:604–611

    Google Scholar 

  • Govindaraju K, Basha SK, Kumar VG, Singaravelu G (2008) Silver, gold and bimetallic nanoparticle production using single-cell protein (Spirulina platensis) Geitler. J Mater Sci 43:5115–5122

    Article  CAS  Google Scholar 

  • Krolikowska A, Kudelski A, Michota A, Bukowska J (2003) SERS studies on the structure of thio-glycolic acid monolayers on silver and gold. Surf Sci 532:227–232

    Article  Google Scholar 

  • Kumar A, Mandal S, Selvakannan PR, Parischa R, Mandale AB, Sastry M (2003) Investigation into the interaction between surface-bound alkylamines and gold nanoparticles. Langmuir 19:6277–6282

    Article  CAS  Google Scholar 

  • Lengke MF, Fleet EM, Southam G (2007) Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver(I) nitrate complex. Langmuir 23:2694–2699

    Article  CAS  PubMed  Google Scholar 

  • Ogi T, Saitoh N, Toshiyuki N, Konishi Y (2010) Room temperature synthesis of gold nanoparticles and nanoplates using Shewanella algae cell extract. J Nanoparticle Res 12:2531–2539

    Article  CAS  Google Scholar 

  • Peto G, Molnar GL, Paszti Z, Geszti O, Beck A, Guczi L (2000) Electronic structure of gold nanoparticles deposited on SiOx/Si. Mater Sci Eng C 19:95–99

    Article  Google Scholar 

  • Prasad TNVKV, Kambala VSR, Naidu R (2013) Phyconanotechnology: synthesis of silver nanoparticles using brown marine algae Cystophora moniliformis and their characterization. J Appl Phycol 25:177–182

    Article  CAS  Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83

    Article  CAS  PubMed  Google Scholar 

  • Rajesh S, Raja DP, Rathi JM, Sahayaraj K (2012) Biosynthesis of silver nanoparticles using Ulva fasciata (Delile) ethyl acetate extract and its activity against Xanthomonas campestris pv. malvacearum. J Biopest 5:119–128

    CAS  Google Scholar 

  • Sadowski Z , Maliszewska IH , Grochowalska B , Polowczyk I , Kozlecki T ( 2008) Synthesis of silver nanoparticles using microorganisms. Mater Sc 26(2):419–424

    Google Scholar 

  • Salunkhe RB, Patil SV, Salunke BK, Patil CD, Sonawane AM (2011) Studies on silver accumulation and nanoparticle synthesis by Cochliobolous lunatus. Appl Biochem Biotechnol 165:221–234

    Article  CAS  PubMed  Google Scholar 

  • Sastry M, Ahmad A, Khan MI, Kumar R (2004) Microbial nanoparticle production. In: Niemeyer CM, Mirkin CA (eds) Nanobiotechnology. Wiley-VCH, Weinheim, pp 126–135

    Google Scholar 

  • Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interf Sci 145:83–96

    Article  CAS  Google Scholar 

  • Shavel A, Cadavid D, Ibanez M, Correte A, Cabot A (2012) Continuous production of Cu2ZnSnS4 nanocrystals in a flow reactor. J Am Chem Soc 134:1438–1441

    Article  CAS  PubMed  Google Scholar 

  • Singaravelu G, Arockiamary JS, Kumar VG, Govindaraju K (2007) A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids Surf B Biointerfaces 57:97–101

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi N (1974) On the basic concept of nanotechnology. Proc Intl Conf Prod Eng Tokyo, Part II. Japan Society of Precision Engineering

  • Thakkar KN, Mhatre SSP, Rasesh Y (2010) Biological synthesis of metallic nanoparticles. Nanomedicine Nanotechnol 6:257–262

    Article  CAS  Google Scholar 

  • Vijayraghavan MR, Kumari S (1995) Chlorophyta: structure, ultrastructure and reproduction. Bishen Singh Mahendra Pal Singh, New Delhi

    Google Scholar 

Download references

Acknowledgements

We are thankful to Dr. W.S. Lakra, Director, Central Institute of Fisheries Education, Mumbai, and to Indian Council of Agricultural Research (ICAR), New Delhi, for the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satya Prakash Shukla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satapathy, S., Shukla, S.P., Sandeep, K.P. et al. Evaluation of the performance of an algal bioreactor for silver nanoparticle production. J Appl Phycol 27, 285–291 (2015). https://doi.org/10.1007/s10811-014-0311-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-014-0311-9

Keywords

Navigation