Skip to main content
Log in

Molecular cloning and characterization of GDP-mannose-3′,5′-epimerase from Gracilaria changii

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

GDP-mannose-3′,5′-epimerase (GME) is an enzyme involved in the biosynthesis of GDP-l-galactose which is a building unit of agar and cell wall polysaccharides. GME catalyzes the formation of GDP-β-l-galactose and GDP-l-gulose from GDP-mannose. In this study, the gene and transcript encoding GME from the red alga Gracilaria changii (GcGME) were cloned. The structural gene sequence of GcGME is devoid of an intron. The cis-acting regulatory element involved in light response is the most abundant element at the 5′-flanking region of GcGME. The open reading frame of GcGME consists of 1,053 nucleotides with 351 amino acids. This cDNA was cloned into pET32a expression vector for recombinant protein production in Escherichia coli. High yield of soluble recombinant GcGME (55 kDa) was expressed upon isopropyl β-d-1-thiogalactopyranoside induction. The enzyme activity of recombinant GcGME was detected using thin layer chromatography and high-performance liquid chromatography. The transcript abundance of GcGME was the highest in G. changii and the lowest in Gracilaria salicornia corresponding to their agar contents. The characterization of GcGME from G. changii is important to facilitate the understanding of its role in agar production of this seaweed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alstchul SF, Madden TL, Schaffer AA, Zhang Z, Miller W, David J, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  Google Scholar 

  • Anderson NS, Dolan TCS, Rees DA (1965) Evidence for a common structural pattern in the polysaccharides sulphates of the Rhodophyceae. Nature 205:1065–1072

    Google Scholar 

  • Araki C, Hirase S (1960) Studies on the chemical constitution of agar-agar. XXI. Re-investigation of methylated agarose of Gelidium amansii. Bull Chem Soc Jpn 33:291–295

    Article  CAS  Google Scholar 

  • Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modeling. Bioinformatics 22:195–201

    Article  PubMed  CAS  Google Scholar 

  • Baydoun EAH, Fry SC (1988) [2-3H]Mannose incorporation in cultured plant cells: investigation of l-galactose residues of the primary cell wall. J Plant Physiol 132:484–490

    Article  CAS  Google Scholar 

  • Chan C-X, Teo S-S, Ho C-L, Othman RY, Phang S-M (2004) Optimisation of RNA extraction for marine red alga, Gracilaria changii (Gracilariales, Rhodophyta). J Appl Phycol 16:297–301

    Article  CAS  Google Scholar 

  • Collins P, Ferrier R (1995) Monosaccharides. Their chemistry and their roles in natural products. Wiley, Chichester, p 506

    Google Scholar 

  • Craigie JS (1990) Cell walls. In: Cole KM, Sheath RG (eds) Biology of the red algae. Cambridge University Press, Cambridge, pp 221–258

    Google Scholar 

  • Creelman RA, Tierney ML, Mullet JE (1992) Jasmonic acid/methyl jasmonate accumulate in wounded soybean hypocotyls and modulate wound gene expression. Proc Natl Acad Sci USA 89:4938–4941

    Article  PubMed  CAS  Google Scholar 

  • Duckworth M, Hong KC, Yaphe W (1971) The agar polysaccharides of Gracilaria species. Carbohydr Res 18:1–9

    Article  CAS  Google Scholar 

  • Duckworth M, Yaphe W (1971) The structure of agar. Part I. Fractionation of a complex mixture of polysaccharides. Carbohydr Res 16:189–197

    Article  CAS  Google Scholar 

  • Gatzek S, Wheeler GL, Smirnoff N (2002) Antisense suppression of l-galactose dehydrogenase in Arabidopsis thaliana provides evidence for its role in ascorbate synthesis and reveals light modulated l-galactose synthesis. Plant J 30:541–553

    Article  PubMed  CAS  Google Scholar 

  • Gilbert L, Alhagdow M, Nunes-Nesi A, Quemener B, Guillon F, Bouchet B, Faurobert M, Gouble B, Page D, Garcia V, Petit J, Stevens R, Causse M, Fernie AR, Lahaye M, Rothan C, Baldet P (2009) GDP-D-mannose 3,5-epimerase (GME) plays a key role at the intersection of ascorbate and non-cellulosic cell-wall biosynthesis in tomato. Plant J 60:499–508

    Article  PubMed  CAS  Google Scholar 

  • Hirase S (1957) Studies on the chemical constitution of agar-agar. XIX. Pyruvic acid as a constituent of agar-agar (part 2). Isolation of a pyruvic acid-linking disaccharide derivative from the methanolysis products of agar. Bull Chem Soc Jpn 30:70–75

    Article  CAS  Google Scholar 

  • Izumi K (1973) Structural analysis of agar-type polysaccharides by NMR spectroscopy. Biochim Biophys Acta 320:311–317

    Article  PubMed  CAS  Google Scholar 

  • Kallberg Y, Oppermann U, Jörnvall H, Persson B (2002) Short-chain dehydrogenases/reductases (SDRs). Coenzyme-based functional assignments in completed genomes. Eur J Biochem 269:4409–4417

    Article  PubMed  CAS  Google Scholar 

  • Küpper FC, Gaquerel E, Cosse A, Adas F, Peters AF, Müller DG, Kloareg B, Salaün JP, Potin P (2009) Free fatty acids and methyl jasmonate trigger defense reactions in Laminaria digitata. Plant Cell Physiol 50:789–800

    Article  PubMed  Google Scholar 

  • Laskowski RA, MacArthur MW, Moss D, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 26:283–291

    Article  CAS  Google Scholar 

  • Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  PubMed  CAS  Google Scholar 

  • Li M, Sui Z, Kang K-H, Zhang X, Zhu M, Yan B (2010) Cloning and analysis of the galactose-1-phosphate uridyltransferase (galt) gene of Gracilariopsis lemaneiformis (Rhodophyta) and correlation between gene expression and agar synthesis. J Appl Phycol 22:157–164

    Article  CAS  Google Scholar 

  • Lluisma AO, Ragan MA (1998) Characterization of a galactose-1-phosphate uridylyltransferase gene from the marine red alga Gracilaria gracilis. Curr Genet 34:112–119

    Article  PubMed  CAS  Google Scholar 

  • Major LL, Wolucka BA, Naismith JH (2005) Structural and function of GDP-mannose-3′,5′-epimerase: an enzyme which performs three chemical reactions at the same active site. J Am Chem Soc 127:18309–18320

    Article  PubMed  CAS  Google Scholar 

  • Manley SL, Burns D (1991) Formation of nucleoside diphosphate monosaccharides (NDP-sugars) by the agarophytes Pterocladia capillacea (Rhodophyceae). J Phycol 27:702–709

    Article  CAS  Google Scholar 

  • Mayes JS (1976) Purification, properties, and isozyme pattern of galactose-1-phosphate uridyl transferase from calf liver. Arch Biochem Biophys 172:715–720

    Article  PubMed  CAS  Google Scholar 

  • McHugh DJ (2003) A guide to the seaweed industry. FAO Fisheries Technical Paper. No. 441. FAO, Rome, p 105

    Google Scholar 

  • Molchanova VI, Ovodova RG, Odovov YS, Elkin YN (1985) Studies of the polysaccharide moiety of corallan, a glycoprotein from Pseudopterogorgia americana. Carbohydr Res 141:289–293

    Article  CAS  Google Scholar 

  • Mourão PAS, Perlin AS (1987) Structural features of sulfated glycans from the tunic of Styela plicata (Chordata-Tunicata): a unique occurrence of l-galactose in sulfated polysaccharides. Eur J Biochem 166:431–436

    Article  PubMed  Google Scholar 

  • Painter TJ (1983) Algal polysaccharides. In: Aspinall GO (ed) The polysaccharides. Academic, New York, pp 195–285

    Google Scholar 

  • Pavão MSG, Albano RM, Lawson AM, Mourão PAS (1989) Structural heterogeneity among unique sulfated l-galactans from different species of ascidians (tunicates). J Biol Chem 264:9972–9979

    PubMed  Google Scholar 

  • Penninckx IA, Eggermont K, Terras FR, Thomma BP, De Samblanx GW, Buchala A, Métraux JP, Manners JM, Broekaert WF (1996) Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell 8:2309–2323

    PubMed  CAS  Google Scholar 

  • Pervical E, McDowell RH (1967) Chemistry and enzymology of marine algal polysaccharides. Academic, London

    Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time PCR. Nucleic Acids Res 29:e45

    Article  PubMed  CAS  Google Scholar 

  • Sacchetti S, Bartolucci S, Rossi M, Cannio R (2004) Identification of GDP-mannose pyrophosphorylase gene from Sulfolobus solfataricus. Gene 332:149–157

    Article  PubMed  CAS  Google Scholar 

  • Santos JA, Mulloy B, Mourão PAS (1992) Structural diversity among sulfated l-galactans from ascidians (tunicates): studies on the species Ciona intestinalis and Herdmania monus. Eur J Biochem 204:669–677

    Article  PubMed  CAS  Google Scholar 

  • Schwede T, Kopp J, Guex N, Peitsch MC (2003) Swiss-model: an automated protein homology modeling server. Nucleic Acids Res 31:3381–3385

    Article  PubMed  CAS  Google Scholar 

  • Seifert GJ (2004) Nucleotide sugar interconversions and cell wall biosynthesis: how to bring the inside to the outside. Curr Opin Plant Biol 7:277–284

    Article  PubMed  CAS  Google Scholar 

  • Siow R-S, Teo S-S, Ho W-Y, Abd Shukor MY, Phang S-M, Ho C-L (2012) Molecular cloning and biochemical characterization of galactose-1-phosphate uridylyltransferase from Gracilaria changii (Rhodophyta). J Phycol 48:155–162

    Article  CAS  Google Scholar 

  • Smirnoff N, Wheeler GL (2000) Ascorbic acid in plants: biosynthesis and function. Crit Rev Biochem Mol Biol 35:291–314

    Article  PubMed  CAS  Google Scholar 

  • Szumilo T, Drake RR, York JL, Elbein AD (1993) GDP-mannose pyrophosphorylase. Purification to homogeneity, properties and utilization to prepare photoaffinity analogs. J Biol Chem 268:17943–17950

    PubMed  CAS  Google Scholar 

  • Teo S-S, Ho C-L, Teoh S, Lee W-W, Tee J-M, Raha AR, Phang S-M (2007) Analyses of expressed sequence tags from an agarophyte, Gracilaria changii (Gracilariales, Rhodophyta). Eur J Phycol 42:41–46

    Article  CAS  Google Scholar 

  • Teo S-S, Ho C-L, Teoh S, Raha AR, Phang S-M (2009) Transcriptomic analysis of Gracilaria changii (Rhodophyta) in response to hyper- and hypo-osmotic stresses. J Phycol 45:1093–1099

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Usov AI (1992) Sulphated polysaccharides of the red algae. Food Hydrocolloids 6:9–23

    Article  CAS  Google Scholar 

  • Watanabe K, Suzuki K, Kitamura S (2006) Characterization of a GDP-D-mannose 3′,5′-epimerase from rice. Phytochemistry 67:338–346

    Article  PubMed  CAS  Google Scholar 

  • Wolucka BA, Montagu MV (2003) GDP-mannose-3′-5′-epimerase forms GDP-l-gulose, a putative intermediate for the de novo biosynthesis of vitamin C in plants. J Biol Chem 278:47483–47490

    Article  PubMed  CAS  Google Scholar 

  • Yaphe W (1984) Chemistry of agars and carrageenans. Hydrobiologia 116/117:171–174

    Article  Google Scholar 

  • Zhang C-J, Liu J-X, Zhang Y-Y, Cai X-F, Gong P-J, Zhang J-H, Wang T-T, Li H-X, Ye Z-B (2011) Overexpression of SIGMEs leads to ascorbate accumulation with enhanced oxidative stress, cold, and salt tolerance in tomato. Plant Cell Rep 30:389–398

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y-H, Ragan MA (1993) cDNA cloning and characterization of the nuclear gene encoding chloroplast glyceraldehyde-3-phosphate dehydrogenase from the marine red alga Gracilaria verrucosa. Curr Genet 23:483–489

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was funded by the Intensified Research Grant for Priority Area number 06-02-02-003 BTK/ER/01 and eSciencefund grant number 02-01-04-SF0018 from the Ministry of Science, Technology and Innovation of Malaysia. Siow R-S was supported by Universiti Putra Malaysia under the Graduate Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chai-Ling Ho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siow, RS., Teoh, S., Teo, SS. et al. Molecular cloning and characterization of GDP-mannose-3′,5′-epimerase from Gracilaria changii . J Appl Phycol 25, 1309–1318 (2013). https://doi.org/10.1007/s10811-013-9987-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-013-9987-5

Keywords

Navigation