Skip to main content

High-value products from microalgae—their development and commercialisation

Abstract

Microalgae (including the cyanobacteria) are established commercial sources of high-value chemicals such as β-carotene, astaxanthin, docosahexaenoic acid, eicosahexaenoic acid, phycobilin pigments and algal extracts for use in cosmetics. Microalgae are also increasingly playing a role in cosmaceuticals, nutraceuticals and functional foods. In the last few years, there has been renewed interest in microalgae as commercial sources of these and other high-value compounds, driven in part by the attempts to develop commercially viable biofuels from microalgae. This paper briefly reviews the main existing and potential high-value products which can be derived from microalgae and considers their commercial development with a particular focus on the various aspects which need to be considered on the path to commercialisation, using the experience gained in the commercialisation of existing algae products. These considerations include the existing and potential market size and market characteristics of the product, competition by chemically synthesised products or by ‘natural’ compounds from other organisms such as fungi, bacteria, higher plants, etc., product quality requirements and assurance, and the legal and regulatory environment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Achitouv E, Metzger P, Rager M, Largeau C (2004) C31–C34 methylated squalenes from a Bolivian strain of Botryococcus braunii. Phytochem 65:3159–3165

    CAS  Article  Google Scholar 

  2. Alonso L, Grima EM, Perez JAS, Sanchez JLG, Camacho FG (1992) Fatty acid variation among different isolates of a single strain of Isochrysis galbana. Phytochem 31:3901–3904

    CAS  Article  Google Scholar 

  3. Arad S, Levy-Ontman O (2010) Red microalgal cell-wall polysaccharides: biotechnological aspects. Curr Opin Biotechnol 21:358–364

    PubMed  CAS  Article  Google Scholar 

  4. Arad S, Cohen E, Ben-Amotz A (1993) Accumulation of canthaxanthin in Chlorella emersonii. Physiol Plant 87:232–236

    CAS  Article  Google Scholar 

  5. Arad S, Cohen E, Yaron A (1996) Non-soluble colouring material used in cosmetics and food preparations. Europe Patent 693535

  6. Arai S (1996) Studies on functional foods in Japan: state of the art. Biosci Biotech Biochem 60:9–15

    CAS  Article  Google Scholar 

  7. Ausich RL, Sanders DJ (1999) Process for the isolation and purification of lycopene crystals. USA Patent 5858700

  8. Bagchi D (2006) Nutraceuticals and functional foods regulations in the United States and around the world. Toxicology 221:1–3

    PubMed  CAS  Article  Google Scholar 

  9. Baker JT (1984) Seaweeds in pharmaceutical studies and applications. Hydrobiologia 116(117):29–40

    Article  Google Scholar 

  10. Balskus EP, Walsh CT (2010) The genetic and molecular basis for sunscreen biosynthesis in cyanobacteria. Science 329:1653–1656

    PubMed  CAS  Article  Google Scholar 

  11. Barclay WR (1994) Process for growing Thraustochytrium and Schizochytrium using non-chloride salts to produce a microfloral biomass having omega-3-highly unsaturated fatty acids. USA Patent 5,340,742

  12. Barclay W, Weaver C, Metz J, Hansen J (2010) Development of docosahexaenoic acid production technology using Schizochytrium: historical perspective and update. In: Cohen Z, Ratledge C (eds) Single cell oils. Microbial and algal oils. AOCS Press, Urbana, pp 75–96

    Google Scholar 

  13. Batista AP, Nunes MC, Fradinho P, Gouveia L, Sousa I, Raymundo A, Franco JM (2012) Novel foods with microalgal ingredients—effect of gel setting conditions on the linear viscoelasticity of Spirulina and Haematococcus gels. J Food Eng 110:182–189

    Article  Google Scholar 

  14. Belay A (1997) Mass culture of Spirulina outdoors—the Earthrise Farms experience. In: Vonshak A (ed) Spirulina platensis (Arthrospira): physiology, cell-biology and biochemistry. Taylor & Francis, London, pp 131–158

    Google Scholar 

  15. Belay A (2008) Spirulina (Arthrospira): production and quality assurance. In: Gershwin ME, Belay A (eds) Spirulina in human nutrition and health. CRC Press, Boca Raton, pp 1–25

    Google Scholar 

  16. Ben-Amotz A, Avron M (1989) The biotechnology of mass culturing Dunaliella for products of commercial interest. In: Cresswell RC, Rees TAV, Shah N (eds) Algal and cyanobacterial biotechnology. Longman Scientific & Technical, Harlow, pp 91–114

    Google Scholar 

  17. Ben-Amotz A, Lers A, Avron M (1988) Stereoisomers of ß-carotene and phytoene in the alga Dunaliella bardawil. Plant Physiol 86:1286–1291

    PubMed  CAS  Article  Google Scholar 

  18. Bhati R, Mallick N (2012) Production and characterization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) co-polymer by a N2-fixing cyanobacterium, Nostoc muscorum Agardh. J Chem Technol Biotechnol 87:505–512

    CAS  Article  Google Scholar 

  19. Bigogno C, Khozin-Goldberg I, Boussiba S, Vonshak A, Cohen Z (2002) Lipid and fatty acid composition of the green oleaginous alga Parietochloris incisa, the richest plant source of arachidonic acid. Phytochem 60:497–503

    CAS  Article  Google Scholar 

  20. Bixler HJ, Porse H (2011) A decade of change in the seaweed hydrocolloids industry. J Appl Phycol 23:321–335

    Article  Google Scholar 

  21. Blanco AM, Moreno J, Del Campo JA, Rivas J, Guerrero MG (2007) Outdoor cultivation of lutein-rich cells of Muriellopsis sp. in open ponds. Appl Microbiol Biotechnol 73:1259–1266

    PubMed  CAS  Article  Google Scholar 

  22. Borowitzka MA (1988a) Fats, oils and hydrocarbons. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, Cambridge, pp 257–287

    Google Scholar 

  23. Borowitzka MA (1988b) Vitamins and fine chemicals. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, Cambridge, pp 153–196

    Google Scholar 

  24. Borowitzka MA (1992) Algal biotechnology products and processes: matching science and economics. J Appl Phycol 4:267–279

    Article  Google Scholar 

  25. Borowitzka MA (1995) Microalgae as sources of pharmaceuticals and other biologically active compounds. J Appl Phycol 7:3–15

    CAS  Article  Google Scholar 

  26. Borowitzka MA (1999a) Economic evaluation of microalgal processes and products. In: Cohen Z (ed) Chemicals from microalgae. Taylor & Francis, London, pp 387–409

    Google Scholar 

  27. Borowitzka MA (1999b) Pharmaceuticals and agrochemicals from microalgae. In: Cohen Z (ed) Chemicals from microalgae. Taylor & Francis, London, pp 313–352

    Google Scholar 

  28. Borowitzka MA (2010) Carotenoid production using microorganisms. In: Cohen Z, Ratledge C (eds) Single cell oils: microbial and algal oils. AOCS Press, Urbana, pp 225–240

    Google Scholar 

  29. Borowitzka MA (2013) Energy from microalgae: a short history. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Spinger, Dordrecht, pp 1–15

    Chapter  Google Scholar 

  30. Borowitzka MA, Borowitzka LJ (1988) Dunaliella. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, Cambridge, pp 27–58

    Google Scholar 

  31. Borowitzka LJ, Borowitzka MA (1989) ß-Carotene (Provitamin A) production with algae. In: Vandamme EJ (ed) Biotechnology of vitamins, pigments and growth factors. Elsevier Applied Science, London, pp 15–26

    Chapter  Google Scholar 

  32. Borowitzka MA, Huisman JM (1993) The ecology of Dunaliella salina (Chlorophyceae, Volvocales)—effect of environmental conditions on aplanospore formation. Bot Mar 36:233–243

    Article  Google Scholar 

  33. Boussiba S, Vonshak A, Cohen Z, Richmond A (1997) A procedure for large-scale production of astaxanthin from Haematococcus. PCT Patent 9:728,274

    Google Scholar 

  34. Chacón-Lee TL, González-Mariño GE (2010) Microalgae for “healthy” foods—possibilities and challenges. Compr Rev Food Sc Food Saf 9:655–675

    Article  Google Scholar 

  35. Chetsumon A, Maeda I, Umeda F, Yagi K, Miura Y, Mizoguchi T (1994) Antibiotic production by the immobilized cyanobacterium, Scytonema sp TISTR 8208, in a seaweed-type photobioreactor. J Appl Phycol 6:539–543

    CAS  Article  Google Scholar 

  36. Chiuh C, Chang S, Chen Y, Hu I (2012) Pharmaceutical composition for inhibiting infection and replication of influenza A and B virus, and the manufacture thereof. European Patent Application EP2455448

  37. Choudhari SM, Ananthanarayan L, Singhal RS (2008) Use of metabolic stimulators and inhibitors for enhanced production of b-carotene and lycopene by Blakeslea trispora NRRL 2895 and 2896. Bioresour Technol 99:3166–3173

    PubMed  CAS  Article  Google Scholar 

  38. Chrismadha T, Borowitzka MA (1994) Effect of cell density and irradiance on growth, proximate composition and eicosapentaenoic acid production of Phaeodactylum tricornutum grown in a tubular photobioreactor. J Appl Phycol 6:67–74

    Article  Google Scholar 

  39. Cohen Z (1999) Porphyridium cruentum. In: Cohen Z (ed) Chemicals from microalgae. Taylor & Francis, London, pp 1–24

    Google Scholar 

  40. Cohen Z, Khozin-Goldberg I (2010) Searching for polyunsaturated fatty acid-rich microalgae. In: Cohen Z, Ratledge C (eds) Single cell oils: microbial and algal oils. AOCS Publishing, Urbana, pp 201–224

    Google Scholar 

  41. Coppens P, da Silva MF, Pettman S (2006) European regulations on nutraceuticals, dietary supplements and functional foods: a framework based on safety. Toxicology 221:59–74

    PubMed  CAS  Article  Google Scholar 

  42. Coragliotti A, Franklin S, Day AG, Decker SM (2012) Microalgal polysaccharide compositions. USA Patent Application 2012/0202768

  43. Costa Perez J (2003) Method of producing beta-carotene by means of mixed culture fermentation using (+) and (−) strains of Blakeslea trispora. European Patent Application 1,367,131

  44. Cysewski GR, Lorenz RT (2004) Industrial production of microalgal cell-mass and secondary products—species of high potential: Haematococcus. In: Richmond A (ed) Microalgal culture: biotechnology and applied phycology. Blackwell Science, Oxford, pp 281–288

    Google Scholar 

  45. Del Campo JA, Rodríguez H, Moreno J, Vargas MA, Rivas J, Guerrero MG (2001) Lutein production by Muriellopsis sp. in an outdoor tubular photobioreactor. J Biotechnol 85:289–295

    PubMed  Article  Google Scholar 

  46. Del Campo JA, Rodríguez H, Moreno J, Vargas MÁ, Rivas J, Guerrero MG (2004) Accumulation of astaxanthin and lutein in Chlorella zofingiensis (Chlorophyta). Appl Microbiol Biotechnol 64:848–854

    PubMed  Article  CAS  Google Scholar 

  47. Demain AL (2007) The business of biotechnology. Ind Biotechnol 3:269–283

    Article  Google Scholar 

  48. Deng R, Chow T-J (2010) Hyperlipidemic, antioxidant and antiinflammatory activities of microalgae Spirulina. Cardiovasc Ther 28:e33–e45

    PubMed  CAS  Article  Google Scholar 

  49. De Philippis R, Sili C, Paperi R, Vincenzini M (2001) Exopolysaccharide-producing cyanobacteria and their possible exploitation: a review. J Appl Phycol 13:293–299

    Article  Google Scholar 

  50. De Philippis R, Colica G, Micheletti E (2011) Exopolysaccharide-producing cyanobacteria in heavy metal removal from water: molecular basis and practical applicability of the biosorption process. Appl Microbiol Biotechnol 92:697–708

    PubMed  CAS  Article  Google Scholar 

  51. Doncheck JA, Huss RJ, Running JA, Skatrud TJ (1996) L-ascorbic acid containing biomass of Chlorella pyrenoidosa. USA Patent 5,521,090

  52. Douglas DJ, Bates SS (1992) Production of domoic acid, a neurotoxic amino acid, by an axenic culture of the marine diatom Nitzschia pungens f multiseries Hasle. Can J Fish Aquat Sci 49:85–90

    CAS  Article  Google Scholar 

  53. Durand-Chastel H (1980) Production and use of Spirulina in Mexico. In: Shelef G, Soeder CJ (eds) Algae biomass. Elsevier/North Holland Biomedical Press, Amsterdam, pp 51–64

    Google Scholar 

  54. EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS) (2012) Guidance for submission for food additive evaluations. EFSA J 10(7):2760

    Google Scholar 

  55. EFSA Scientific Committee (2009) Guidance on safety assessment of botanicals and botanical preparations intended for use as ingredients in food supplements. EFSA J 7(9):1249

    Google Scholar 

  56. Eriksen NT (2008) Production of phycocyanin—a pigment with applications in biology, biotechnology, foods and medicine. Appl Microbiol Biotechnol 80:1–14

    PubMed  CAS  Article  Google Scholar 

  57. Fabregas J, Aran J, Morales ED, Lamela T, Otero A (1997) Modification of sterol concentration in marine microalgae. Phytochem 46:1189–1191

    CAS  Google Scholar 

  58. Fan K, Aki T, Chen F, Jiang Y (2010) Enhanced production of squalene in the thraustochytrid Aurantiochytrium mangrovei by medium optimization and treatment with terbinafine. World J Microbiol Biotechnol 26:1303–1309

    CAS  Article  Google Scholar 

  59. Fehling J, Stoecker DK, Baldauf SL (2007) Photosynthesis and the eukaryote tree of life. In: Falkowski PG, Knoll AH (eds) Evolution of primary producers in the sea. Academic, NY, pp 75–107

    Chapter  Google Scholar 

  60. Fernández-Sevilla J, Acién Fernández F, Molina Grima E (2010) Biotechnological production of lutein and its applications. Appl Microbiol Biotechnol 86:27–40

    PubMed  Article  CAS  Google Scholar 

  61. Francavilla M, Trotta P, Luque R (2010) Phytosterols from Dunaliella tertiolecta and Dunaliella salina: a potentially novel industrial application. Bioresour Technol 101:4144–4150

    PubMed  CAS  Article  Google Scholar 

  62. Francavilla M, Colaianna M, Zotti M, Morgese MG, Trotta P, Tucci P, Schiavone S, Cuomo V, Trabace L (2012) Extraction, characterization and in vivo neuromodulatory activity of phytosterols from microalga Dunaliella tertiolecta. Curr Med Chem 19:3058–3067

    PubMed  CAS  Article  Google Scholar 

  63. Frost & Sullivan (2010) Frost & Sullivan and the Global Organisation for EPA and DHA omega-3 global overview of the marine and algal oil EPA and DHA omega-3 ingredients market. Chicago

  64. Garcia-Pichel F, Castenholz RW (1993) Occurrence of UV-absorbing, mycosporine-like compounds among cyanobacterial isolates and an estimate of their screening capacity. Appl Environ Microbiol 59:163–169

    PubMed  CAS  Google Scholar 

  65. Gellenbeck K (2012) Utilization of algal materials for nutraceutical and cosmeceutical applications—what do manufacturers need to know? J Appl Phycol 24:309–313

    Article  Google Scholar 

  66. Gerwick WH, Moore BS (2012) Lessons from the past and charting the future of marine natural products drug discovery and chemical biology. Chem Biol 19:85–98

    PubMed  CAS  Article  Google Scholar 

  67. Gerwick WH, Roberts MA, Proteau PJ, Chen JL (1994) Screening cultured marine microalgae for anticancer-type activity. J Appl Phycol 6:143–149

    CAS  Article  Google Scholar 

  68. Glazer AN (1994) Phycobiliproteins—a family of valuable, widely used fluorophores. J Appl Phycol 6:105–112

    CAS  Article  Google Scholar 

  69. Glazer A, Streyer L (1984) Phycoflours. Trends Biochem Sci 8:423–427

    Article  Google Scholar 

  70. Goiris K, Muylaert K, Fraeye I, Foubert I, De Brabanter J, De Cooman L (2012) Antioxidant potential of microalgae in relation to their phenolic and carotenoid content. J Appl Phycol. doi:10.1007/s10811-012-9804-6:1-10

  71. Gouveia L, Batista AP, Sousa I, Raymundo A, Banderra NM (2008a) Microalgae in novel food products. In: Konstantinos N, Papadopoulos N (eds) Food chemistry research developments. Nova, New York, pp 75–111

    Google Scholar 

  72. Gouveia L, Coutinho C, Mendonca E, Batista AP, Sousa I, Banderra NM, Raymundo A (2008b) Functional biscuits with PUFA-ω3 from Isochrysis galbana. J Sci Food Agric 88:891–896

    CAS  Article  Google Scholar 

  73. GRAS (2012) GRAS Notice 000424: notice to US Food and Drug Administration the use of CyaninPlus™ is generally recognised as safe. www.accessdata.fda.gov/scripts/fcn/gras_notices/GRN000424.pdf. Accessed 12 Dec 2012

  74. Grobbelaar JU (2003) Quality control and assurance: crucial for the sustainability of the applied phycology industry. J Appl Phycol 15:209–215

    CAS  Article  Google Scholar 

  75. Grung M, D’Souza FML, Borowitzka MA, Liaaen-Jensen S (1992) Algal carotenoids 51. Secondary carotenoids 2. Haematococcus pluvialis aplanospores as a source of (3S,3′S)-astaxanthin esters. J Appl Phycol 4:165–171

    CAS  Article  Google Scholar 

  76. Haase S, Huchzermeyer B, Rath T (2012) PHB accumulation in Nostoc muscorum under different carbon stress situations. J Appl Phycol 24:157–162

    CAS  Article  Google Scholar 

  77. Hammond BG, Mayhew DA, Holson JF, Nemec MD, Mast RW, Sander WJ (2001) Safety assessment of DHA-rich microalgae from Schizochytrium sp.: II. Developmental toxicity evaluation in rats and rabbits. Regul Toxicol Pharmacol 33:205–217

    PubMed  CAS  Article  Google Scholar 

  78. Hammond BG, Mayhew DA, Kier LD, Mast RW, Sander WJ (2002) Safety assessment of DHA-rich microalgae from Schizochytrium sp.: IV. Mutagenicity studies. Regul Toxicol Pharmacol 35:255–265

    PubMed  CAS  Article  Google Scholar 

  79. Hanagata N (1999) Secondary carotenoid accumulation in Scenedemus komarekii (Chlorophyceae, Chlorophyta). J Phycol 35:960–966

    CAS  Article  Google Scholar 

  80. Harder R, von Witsch H (1942) Die Massenkultur von Diatomeen. Ber Deutsch Bot Ges 60:146–152

    Google Scholar 

  81. Hayashi T, Hayashi K, Maeda M, Kojima I (1996) Calcium spirulan, an inhibitor of enveloped virus replication, from a blue-green alga Spirulina platensis. J Nat Prod 59:83–87

    PubMed  CAS  Article  Google Scholar 

  82. Herrero M, Cifuentes A, Ibanez E (2006) Sub- and supercritical fluid extraction of functional ingredients from different natural sources: plants, food-by-products, algae and microalgae. A review. Food Chem 98:136–148

    CAS  Article  Google Scholar 

  83. Hu Q (2004) Industrial production of microalgal cell-mass and secondary products—major industrial species: Arthrospira (Spirulina) platensis. In: Richmond A (ed) Microalgal culture: biotechnology and applied phycology. Blackwell Science, Oxford, pp 264–272

    Google Scholar 

  84. Hu Q, Hu Z, Cohen Z, Richmond A (1997) Enhancement of eicosapentaenoic acid (EPA) and g-linolenic acid (GLA) production by manipulating cell density in outdoor cultures of Monodus subterraneus (Eustigmatophyte) and Spirulina platensis (Cyanobacterium). Eur J Phycol 32:81–88

    Article  Google Scholar 

  85. Hu L, Huang B, Zuo M, Wei H (2008) Preparation of the phycoerythrin subunit liposome in a photodynamic experiment on liver cancer cells. Acta Pharmacol Sin 29:1539–1546

    PubMed  CAS  Article  Google Scholar 

  86. Huerlimann R, De Nys R, Heimann K (2010) Growth, lipid content, productivity, and fatty acid composition of tropical microalgae for scale-up production. Biotechnol Bioeng 107:245–257

    PubMed  CAS  Article  Google Scholar 

  87. Ismail A (2010) Marine lipids overview: markets, regulations and the value chain. Oléagineux, Corps Gras, Lipides 17:205–208

    Google Scholar 

  88. Jäger C, Sättler A, Schröder KR, Rögner M (2002) Use of mixoxanthophyll and/or echinenone for the prophylactic and/or therapeutic treatment of undesirable physical conditions conditioned or favoured by oxidative processes. PCT Patent Application WO02/24183

  89. Jin E, Feth B, Melis A (2003) A mutant of the green alga Dunaliella salina constitutively accumulates zeaxanthin under all growth conditions. Biotechnol Bioeng 81:115–124

    PubMed  CAS  Article  Google Scholar 

  90. Kathrein HR (1964) Production of carotenoids by the cultivation of algae. USA Patent 3,142,135

  91. Katz J, Janik JE, Younes A (2011) Brentuximab vedotin (SGN-35). Clin Cancer Res 17:6428–6436

    PubMed  CAS  Article  Google Scholar 

  92. Kaya K, Nakazawa A, Matsuura H, Honda D, Inouye I, Watanabe MM (2011) Thraustochytrid Aurantiochytrium sp. 18W-13a accummulates high amounts of squalene. Biosci Biotechnol Biochem 75:2246–2248

    PubMed  CAS  Article  Google Scholar 

  93. Kellam SJ, Cannell RJP, Owsianka AM, Walker JM (1988) Results of a large-scale screening programme to detect antifungal activity from marine and freshwater microalgae in laboratory culture. Brit Phycol J 23:45–47

    Article  Google Scholar 

  94. Kilian O, Benemann CSE, Niyogi KK, Vick B (2011) High-efficiency homologous transformation in the oil-producing alga Nannochloropsis sp. Proc Natl Acad Sci U S A 108:21265–21269

    PubMed  CAS  Article  Google Scholar 

  95. Kim S-K, Pangestuti R (2011) Biological properties of cosmeceuticals derived from marine algae. In: Kim S-K (ed) Marine Cosmeceuticals. CRC Press, Boca Raton, pp 191–200

  96. Kim SM, Jung YJ, Kwon ON, Cha KH, Um BH, Chung D, Pan CH (2012) A potential commercial source of fucoxanthin extracted from the microalga Phaeodactylum tricornutum. Appl Biochem Biotechnol 166:1843–1855

    PubMed  CAS  Article  Google Scholar 

  97. Klein B, Walter C, Lange H, Buchholz R (2012) Microalgae as natural sources for antioxidative compounds. J Appl Phycol 24:1133–1139

    CAS  Article  Google Scholar 

  98. Koo S, Cha K, Song D-G, Chung D, Pan C-H (2012) Optimization of pressurized liquid extraction of zeaxanthin from Chlorella ellipsoidea. J Appl Phycol 24:725–730

    CAS  Article  Google Scholar 

  99. Kroes R, Schaefer EJ, Squire RA, Williams GM (2003) A review of the safety of DHA45-oil. Food Chem Toxicol 41:1433–1446

    PubMed  CAS  Article  Google Scholar 

  100. Kyle DJ (2005) The future development of single cell oils. In: Cohen Z, Ratledge C (eds) Single cell oils. AOCS Publishing, Urbana, pp 239–248

    Google Scholar 

  101. Kyle DJ, Boswell KDB, Gladue RM, Reeb SE (1992) Designer oils from microalgae as nutritional supplements. In: Bills DD, Kung SD (eds) Biotechnology and nutrition. Butterworth-Heinemann, Boston, pp 451–468

    Google Scholar 

  102. Lemoine Y, Schoefs B (2010) Secondary ketocarotenoid astaxanthin biosynthesis in algae: a multifunctional response to stress. Photosynth Res 106:155–177

    PubMed  CAS  Article  Google Scholar 

  103. Li HB, Jiang Y, Chen F (2002) Isolation and purification of lutein from the microalga Chlorella vulgaris by extraction after saponification. J Agric Food Chem 50:1070–1072

    PubMed  CAS  Article  Google Scholar 

  104. Li H-B, Fan K-W, Chen F (2006) Isolation and purification of canthaxanthin from the microalga Chlorella zofingiensis by high-speed counter-current chromatography. J Sep Sci 29:699–703

    Article  CAS  Google Scholar 

  105. Lignell A, Inborr J (2002) Method of the prophylactic treatment of mastitis. USA Patent 6,335,015

  106. Llewellyn CA, Airs RL (2010) Distribution and abundance of MAAs in 33 species of microalgae across 13 classes. Mar Drugs 8:1273–1291

    PubMed  CAS  Article  Google Scholar 

  107. Lopez Alonso D, Seguera del Castillo CI (1999) Genetic improvement of EPA content in microalgae. In: Cohen Z (ed) Chemicals from microalgae. Taylor & Francis, London, pp 93–107

    Google Scholar 

  108. Lorenz RT (2002) Method for retarding and preventing sunburn by UV light. USA Patent 6,433,025

  109. Lorenz RT, Cysewski GR (2000) Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol 18:160–167

    PubMed  CAS  Article  Google Scholar 

  110. Lu C, Rao K, Hall D, Vonshak A (2001) Production of eicosapentaenoic acid (EPA) in Monodus subterraneus grown in a helical tubular photobioreactor as affected by cell density and light intensity. J Appl Phycol 13:517–522

    CAS  Article  Google Scholar 

  111. Lu Y-M, Xiang W-Z, Wen Y-H (2011) Spirulina (Arthrospira) industry in Inner Mongolia of China: current status and prospects. J Appl Phycol 23:265–269

    PubMed  Article  Google Scholar 

  112. Luesch H, Moore RE, Paul VJ, Mooberry SL, Corbett TH (2001) Isolation of dolastatin 10 from the marine cyanobacterium Symploca species VP642 and total stereochemistry and biological evaluation of its analogue symplostatin 1. J Nat Prod 64:907–910

    PubMed  CAS  Article  Google Scholar 

  113. Marshall J, Nichols PD, Hallegraeff GM (2002) Chemotaxonomic survey of sterols and fatty acids in six marine raphidophyte algae. J Appl Phycol 14:255–265

    CAS  Article  Google Scholar 

  114. Massana R, Terrado R, Forn I, Lovejoy C, Pedrós-Alió C (2006) Distribution and abundance of uncultured heterotrophic flagellates in the world oceans. Environ Microbiol 8:1515–1522

    PubMed  CAS  Article  Google Scholar 

  115. Matsuura H, Watanabe M, Kaya K (2012) Echinenone production of a dark red-coloured strain of Botryococcus braunii. J Appl Phycol 24:973–977

    CAS  Article  Google Scholar 

  116. Mayer AMS, Glaser KB, Cuevas C, Jacobs RS, Kem W, Little RD, McIntosh JM, Newman DJ, Potts BC, Shuster DE (2010) The odyssey of marine pharmaceuticals: a current pipeline perspective. Trends Pharmacol Sci 31:255–265

    PubMed  CAS  Article  Google Scholar 

  117. Mendes A, Reis A, Vasconcelos R, Guerra P, Lopes da Silva T (2009) Crypthecodinium cohnii with emphasis on DHA production: a review. J Appl Phycol 21:199–214

    Article  Google Scholar 

  118. Menoyo D, Lopez-Bote CJ, Bautista JM, Obach A (2003) Growth, digestibility and fatty acid utilization in large Atlantic salmon (Salmo salar) fed varying levels of n-3 and saturated fatty acids. Aquaculture 225:295–307

    CAS  Article  Google Scholar 

  119. Min-Thein U (1993) Production of Spirulina in Myanmar (Burma). Bull Inst Oceanogr, Monaco 12:175–178

    Google Scholar 

  120. Mokady S, Abramovici A, Cogan U (1989) The safety evaluation of Dunaliella bardawil as a potential food supplement. Food Chem Toxicol 27:221–226

    PubMed  CAS  Article  Google Scholar 

  121. Molina Grima E, Sanchez Perez JA, Garcia Camacho F, Robles Medina A, Giminez Giminez A, Lopez Alonso D (1995) The production of polyunsaturated fatty acids by microalgae: from strain selection to product purification. Process Biochem 30:711–719

    CAS  Google Scholar 

  122. Molina Grima E, Garcia Camacho F, Ácien Fernandez FG (1999) Production of EPA from Phaeodactylum tricornutum. In: Cohen Z (ed) Chemicals from microalgae. Taylor & Francis, London, pp 57–92

    Google Scholar 

  123. Morlière P, Mazière J, Santus R, Smith CD, Prinsep MR, Stobbe CC, Fenning MC, Golberg JL, Chapman JD (1998) Tolyporphin: a natural product from cyanobacteria with potent photosensitising activity against tumor cells in vitro and in vivo. Cancer Res 58:3571–3576

    PubMed  Google Scholar 

  124. Morton SL, Bomber JW (1994) Maximizing okadaic acid content from Prorocentrum hoffmannianum Faust. J Appl Phycol 6:41–44

    CAS  Article  Google Scholar 

  125. Nagai H, Mikami Y, Yazawa K, Gonoi T, Yasumoto T (1993) Biological activities of novel polyether antifungals, gambieric acids A and B from a marine dinoflagellate Gambierdiscus toxicus. J Antibiot 46:520–522

    PubMed  CAS  Article  Google Scholar 

  126. Nasrabadi MR, Razavi SH (2010) Enhancement of canthaxanthin production from Dietzia natronolimnaea HS-1 in a fed-batch process using trace elements and statistical methods. Braz J Chem Eng 27:517–529

    CAS  Article  Google Scholar 

  127. Ohta S, Shiomi Y, Kawashima A, Aozasa O, Nakao T, Nagate T, Kitamura K, Miyata H (1995) Antibiotic effect of linolenic acid from Chlorococcum strain HS-101 and Dunaliella primolecta on methicillin-resistant Staphylococcus aureus. J Appl Phycol 7:121–127

    CAS  Article  Google Scholar 

  128. Oi VT, Glazer AN, Sryer L (1982) Fluorescent phycobilin conjugates for analysis of cells and molecules. J Cell Biol 93:981–986

    PubMed  CAS  Article  Google Scholar 

  129. Olaizola M (2000) Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors. J Appl Phycol 12:499–506

    CAS  Article  Google Scholar 

  130. Patterson GML, Larsen LK, Moore RE (1994a) Bioactive natural products from blue-green algae. J Appl Phycol 6:151–157

    CAS  Article  Google Scholar 

  131. Patterson GW, Tsitsatzardis E, Wikfors GH, Ghosh P, Smith BC, Gladu PK (1994b) Sterols of eustigmatophytes. Lipids 29:661–664

    PubMed  CAS  Article  Google Scholar 

  132. Pelah D, Sintov A, Cohen E (2004) The effect of salt stress on the production of canthaxanthin and astaxanthin by Chlorella zofingiensis grown under limited light intensity. World J Microbiol Biotechnol 20:483–486

    CAS  Article  Google Scholar 

  133. Pereira S, Zille A, Micheletti E, Moradas-Ferreira P, De Philippis R, Tamagnini P (2009) Complexity of cyanobacterial exopolysaccharides: composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiol Rev 33:917–941

    PubMed  CAS  Article  Google Scholar 

  134. Pérez JAS (1994) N-3 polyunsaturated fatty acid productivity of the marine microalga Isochrysis galbana—growth conditions and phenotypic selection. J Appl Phycol 6:475–478

    Article  Google Scholar 

  135. Pettit GR, Kamano Y, Herald CL, Tuinman AA, Boettner FE, Kizu H, Schmidt JM, Baczynskyj L, Tomer K, Bonterns RJ (1987) The isolation and structure of a remarkable marine animal antineoplastic constituent: dolastatin 10. J Am Chem Soc 109:6883–6885

    CAS  Article  Google Scholar 

  136. Philip S, Keshavarz T, Roy I (2007) Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol 82:233–247

    CAS  Article  Google Scholar 

  137. Piccaglia R, Marotti M, Grandi S (1998) Lutein and lutein ester content in different types of Tagetes patula and T. erecta. Ind Crops Prod 8:45–51

    CAS  Article  Google Scholar 

  138. Plaza M, Herrero M, Cifuentes A, Ibáñez E (2009) Innovative natural functional ingredients from microalgae. J Agric Food Chem 57:7159–7170

    PubMed  CAS  Article  Google Scholar 

  139. Pulz O, Gross W (2004) Valuable products from biotechnology of algae. Appl Microbiol Biotechnol 65:635–648

    PubMed  CAS  Article  Google Scholar 

  140. Ratledge C (2004) Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86:807–815

    PubMed  CAS  Article  Google Scholar 

  141. Ratledge C (2010) Single cell oils for the 21st century. In: Cohen Z, Ratledge C (eds) Single cell oils. Microbial and algal oils. AOCS Press, Urbana, pp 3–26

    Google Scholar 

  142. Reddy CSK, Ghai R, Rashmi KVC (2003) Polyhydroxyalkanoates: an overview. Bioresour Technol 87:137–146

    PubMed  CAS  Article  Google Scholar 

  143. Rito-Palomares M, Nuñez L, Amador D (2001) Practical application of aqueous two-phase systems for the development of a prototype process for c-phycocyanin recovery from Spirulina maxima. J Chem Technol Biotechnol 76:1273–1280

    CAS  Article  Google Scholar 

  144. Rodríguez-Sáiz M, de la Fuente J, Barredo J (2010) Xanthophyllomyces dendrorhous for the industrial production of astaxanthin. Appl Microbiol Biotechnol 88:645–658

    PubMed  Article  CAS  Google Scholar 

  145. Ryan AS, Zeller S, Nelson EB (2010) Safety evaluation of single cell oils and the regulatory requirements for use as a food ingredient. In: Cohen Z, Ratledge C (eds) Single cell oils: microbial and algal oils. AOCS Publishing, Urbana, pp 317–350

    Google Scholar 

  146. Sánchez J, Fernández-Sevilla J, Acién F, Cerón M, Pérez-Parra J, Molina-Grima E (2008) Biomass and lutein productivity of Scenedesmus almeriensis: influence of irradiance, dilution rate and temperature. Appl Microbiol Biotechnol 79:719–729

    PubMed  Article  CAS  Google Scholar 

  147. Schaeffer DJ, Krylov VS (2000) Anti-HIV activity of extracts and compounds from algae and cyanobacteria. Ecotoxicol Environ Saf 45:208–227

    PubMed  CAS  Article  Google Scholar 

  148. Schmidt I, Schewe H, Gassel S, Jin C, Buckingham J, Hümbelin M, Sandmann G, Schrader J (2011) Biotechnological production of astaxanthin with Phaffia rhodozyma/Xanthophyllomyces dendrorhous. Appl Microbiol Biotechnol 89:555–571

    PubMed  CAS  Article  Google Scholar 

  149. Schwenzfeier A, Wierenga PA, Gruppen H (2011) Isolation and characterization of soluble protein from the green microalgae Tetraselmis sp. Bioresour Technol 102:9121–9127

    PubMed  CAS  Article  Google Scholar 

  150. Schwenzfeier A, Helbig A, Wierenga PA, Gruppen H (2013) Emulsion properties of algae soluble protein isolate from Tetraselmis sp. Food Hydrocoll 30:258–263

    CAS  Article  Google Scholar 

  151. Sekar S, Chandramohan M (2008) Phycobiliproteins as a commodity: trends in applied research, patents and commercialization. J Appl Phycol 20:113–136

    Article  Google Scholar 

  152. Shi XM, Jiang Y, Chen F (2002) High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fed-batch culture. Biotechnol Prog 18:723–727

    PubMed  CAS  Article  Google Scholar 

  153. Singh S, Kate BN, Banerjee UC (2005) Bioactive compounds from cyanobacteria and microalgae: an overview. Crit Rev Biotechnol 25:73–95

    PubMed  CAS  Article  Google Scholar 

  154. Sioen I, Matthys C, Hyuybrechts I, Van Camp J, De Henauw S (2011) Consumption of plant sterols in Belgium: consumption patterns of plant sterol-enriched foods in Flanders, Belgium. Br J Nutr 105:911–918

    PubMed  CAS  Article  Google Scholar 

  155. Soeder CJ, Pabst W (1970) Gesichtspunkte fur die Verwendung von Mikroalgen in der Ernahrung von Mensch und Tier. Ber Deutsch Bot Ges 83:607–625

    CAS  Google Scholar 

  156. Solovchenko A, Khozin-Goldberg I, Didi-Cohen S, Cohen Z, Merzlyak M (2008) Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incisa. J Appl Phycol 20:245–251

    CAS  Article  Google Scholar 

  157. Sommer TR, D’Souza FML, Morrissy NM (1992) Pigmentation of adult rainbow trout, Oncorhynchus mykiss, using the green alga Haematococcus pluvialis. Aquaculture 106:63–74

    Article  Google Scholar 

  158. Soong P (1980) Production and development of Chlorella and Spirulina in Taiwan. In: Shelef G, Soeder CJ (eds) Algae biomass. Elsevier/North Holland Biomedical Press, Amsterdam, pp 97–113

    Google Scholar 

  159. Spanova M, Daum G (2011) Squalene—biochemistry, molecular biology, process biotechnology, and applications. Eur J Lipid Sci Technol 113:1299–1320

    CAS  Article  Google Scholar 

  160. Spiller GA, Dewell A (2003) Safety of an astaxanthin-rich Haematococcus pluvialis algal axtract: a randomized clinical trial. J Med Food 6:51–56

    PubMed  CAS  Article  Google Scholar 

  161. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    PubMed  CAS  Article  Google Scholar 

  162. Steinberg DC (2005) Cosmaceutical regulations—a global perspective. Cosmet Toiletries 120:32–36

    Google Scholar 

  163. Stephens E, Ross IL, King Z, Mussgnug JH, Kruse O, Posten C, Borowitzka MA, Hankamer B (2010) An economic and technical evaluation of microalgal biofuels. Nat Biotechnol 28:126–128

    PubMed  CAS  Article  Google Scholar 

  164. Stern RF, Horak A, Andrew RL, Coffroth M-A, Andersen RA, Küpper FC, Jameson I, Hoppenrath M, Véron B, Kasai F, Brand J, James ER, Keeling PJ (2010) Environmental barcoding reveals massive dinoflagellate diversity in marine environments. PLoS One 5:e13991

    PubMed  Article  CAS  Google Scholar 

  165. Stolz P, Obermayer B (2005) Manufacturing microalgae for skincare. Cosmet Toiletries 120:99–106

    Google Scholar 

  166. Streekstra H (2010) Arachidonic acid: fermentative production by Mortierella fungi. In: Cohen Z, Ratledge C (eds) Single cell oils. Microbial and algal oils. AOCS Publishing, Urbana, pp 97–114

    Google Scholar 

  167. Sukenik A (1999) Production of eicosapentaenoic acid by the marine eustigmatophyte Nannochloropsis. In: Cohen Z (ed) Chemicals from microalgae. Taylor & Francis, London, pp 41–56

    Google Scholar 

  168. Tababa H, Hirabayashi S, Inubushi K (2012) Media optimization of Parietochloris incisa for arachidonic acid accumulation in an outdoor vertical tubular photobioreactor. J Appl Phycol 24:887–895

    PubMed  CAS  Article  Google Scholar 

  169. Tamiya H (1957) Mass culture of algae. Ann Rev Plant Physiol 8:309–344

    CAS  Article  Google Scholar 

  170. Tanticharoen M, Reungjitchachawali M, Boonag B, Vonktaveesuk P, Vonshak A, Cohen Z (1994) Optimization of γ-linolenic acid (GLA) production in Spirulina platensis. J Appl Phycol 6:295–300

    CAS  Article  Google Scholar 

  171. Thomas SS, Swaminathan K, Nagaraj JB (2003) Process to produce astaxanthin from Haematococcus biomass. PCT Patent 03/027267

  172. Toh PSY, Jau M-H, Yew S-P, Abed RMM, Sudesh K (2008) Comparison of polyhydroxyalkonates biosynthesis, mobilization and the effects of cellular morphology in Spirulina platensis and Synechocystis sp. UNIWG. J Biosci 19:21–38

    Google Scholar 

  173. Venkataraman LV, Becker WE, Shamala TR (1977) Studies on the cultivation of the alga Scenedesmus acutus as a single cell protein. Life Sci 20:223–234

    PubMed  CAS  Article  Google Scholar 

  174. Vincenzini M, De Philippis R (1999) Polyhydroxyalkonates. In: Cohen Z (ed) Chemicals from microalgae. Taylor & Francis, London, pp 292–312

    Google Scholar 

  175. Vincenzini M, Sili C, De Philippis R, Ena A, Materassi R (1990) Occurrence of poly-β-hydroxybutyrate in Spirulina species. J Bacteriol 172:2791–2792

    PubMed  CAS  Google Scholar 

  176. Volkman JV (2003) Sterols in microorganisms. Appl Microbiol Biotechnol 60:495–506

    PubMed  CAS  Google Scholar 

  177. von Oppen-Bezalel L, Shaish A (2009) Application of the colourless carotenoids, phytoene and phytofluene in cosmetics, wellness, nutrition, and theropeutics. In: Ben-Amotz A, Polle JEW, Subba Rao DV (eds) The alga Dunaliella: biodiversity, physiology, genomics and biotechnology. Science Publishers, Enfield, pp 423–444

    Google Scholar 

  178. Wang Y, Chen T (2008) The biosynthetic pathway of carotenoids in the astaxanthin-producing green alga Chlorella zofingiensis. World J Microbiol Biotechnol 24:2927–2932

    CAS  Article  Google Scholar 

  179. Whistler RL, BeMiller JN (eds) (1993) Industrial gums: polysaccharides and their derivatives, 3rd edn. Academic, San Diego

    Google Scholar 

  180. Wijffels RH, Barba E (2010) An outlook on microalgal biofuels. Science 329:796–799

    PubMed  CAS  Article  Google Scholar 

  181. Wu GF, Shen ZY, Wu QY (2002) Modification of carbon partitioning to enhance PHB production in Synechocystis sp. PCC6803. Enzyme Microb Technol 30:710–715

    CAS  Article  Google Scholar 

  182. Wynn J, Behrens P, Sundararajan A, Hansen J, Apt K (2010) Production of single cell oils from dinoflagellates. In: Cohen Z, Ratledge C (eds) SIngle cell oils. Microbial and algal oils. AOCS Press, Urbana, pp 115–129

    Google Scholar 

  183. Yamaguchi K, Murakami M, Okino T (1989) Screening of angiotensin-converting enzyme inhibitory activities in microalgae. J Appl Phycol 1:271–275

    Article  Google Scholar 

  184. Zeller S (2005) Safety evaluation of single cell oils and the regulatory requirements for use as food ingredients. In: Cohen Z, Ratledge C (eds) Single cell oils. AOCS Press, Urbana, pp 161–181

    Google Scholar 

  185. Zhukova NV, Aizdaicher NA (1995) Fatty acid composition of 15 species of marine microalgae. Phytochemistry 39:351–356

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael A. Borowitzka.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Borowitzka, M.A. High-value products from microalgae—their development and commercialisation. J Appl Phycol 25, 743–756 (2013). https://doi.org/10.1007/s10811-013-9983-9

Download citation

Keywords

  • Microalgae
  • Cosmaceuticals
  • Nutraceuticals
  • Functional foods
  • Polyunsaturated fatty acids
  • Polysaccharides
  • Carotenoids
  • Pigments
  • Regulations
  • GRAS