Skip to main content

Advertisement

Log in

Chemical composition and ethanol production potential of Thai seaweed species

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

This study evaluated the potential use of several Thai seaweed species for ethanol production. The high biomass of the green algae Ulva intestinalis and Rhizoclonium riparium and the red algae Gracilaria salicornia and Gracilaria tenuistipitata in an earthen pond culture led us to select these species for our study. The seaweed species were analyzed for chemical composition, resulting in ash contents of 37.62 ± 0.15 % and fiber of 11.93 ± 0.16 %, with the highest values in R. riparium. Low lipid values were found in all species, with the highest value (p < 0.05) in G. salicornia (1.69 ± 0.07 %) and the lowest in R. riparium (0.28 ± 0.01 %) and G. tenuistipitata (0.26 ± 0.01 %). The highest carbohydrate contents were found in G. tenuistipitata (54.89 %), and the lowest were in R. riparium (29.53 %). G. tenuistipitata (8.58 ± 0.36 %) and U. intestinalis (8.24 ± 0.28 %) had higher sulfate contents compared with G. salicornia (4.69 ± 0.04 %) and R. riparium (1.97 ± 0.20 %). The monosugar algal tissue components were analyzed by HPLC; rhamnose, xylose, fucose, arabinose, mannose, glucose, and galactose were used as reference sugars. Total sugar was found to be highest in G. tenuistipitata (98.21 %). Arabinose, glucose, and galactose were the main sugar components in all species. Glucose obtained from G. tenuistipitata (6.55 %) and R. riparium (6.52 %) was higher than in G. salicornia (0.27 %) and U. intestinalis (2.78 %). G. tenuistipitata fermentation gave a higher yield of ethanol (4.17 × 10−3 g ethanol g−1 sugars; 139.12 μg ethanol g−1 glucose) than R. riparium (0.086 × 10−3 g ethanol g−1 sugars; 33.84 μg ethanol g−1 glucose), U. intestinalis (0.074 × 10−3 g ethanol g−1 sugars; 9.98 μg ethanol g−1 glucose), and G. salicornia (0.031 × 10−3 g ethanol g−1 sugars; 1.43 μg ethanol g−1 glucose).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Adams JM, Gallagher JA, Donnison IS (2009) Fermentation study on Saccharina latissima for bioethanol production considering variable pre-treatments. J Appl Phycol 21:569–574

    Article  CAS  Google Scholar 

  • Adam JW, Leonard E, Win MN, Regitsky DD, Santos CNS, Kim PB, Cooper SR, Raisner RM, Herman A, Sivitz AB, Lakshmanaswamy A, Kashiyama Y, Baker D, Yoshikuni Y (2012) An engineered microbial platform for direct biofuel production from brown macroalgae. Science 335:308–313

    Article  Google Scholar 

  • Anonymous (2012) Thailand energy statistics 2012. Alternative Energy and Efficiency Information Center, Department of Alternative Energy Development and Efficiency, Ministry of Energy, Bangkok, 51 pp

  • AOAC International (2005) Official methods of analysis of AOAC International, 18th edn. AOAC International, Gaithersburg

    Google Scholar 

  • Benjama O, Masniyom P (2011) Chemical composition, element and amino acid profiles of Ulva intestinalis from the shrimp cultured ponds. Agric Sci J 42(Suppl):493–496 (Abstract in English)

    Google Scholar 

  • Benjama O, Masniyom P (2012) Biochemical composition and physicochemical properties of two red seaweeds (Gracilaria fisheri and G. tenuistipitata) from the Pattani Bay in southern Thailand. Songklanakarin J Sci Technol 34:223–230

    Google Scholar 

  • Buriyo AS, Kivaisi AK (2003) Standing stock, agar yield and properties of Gracilaria salicornia harvested along the Tanzanian coast. Western Indian Ocean J Mar Sci 2:171–178

    Google Scholar 

  • Candra KP, Sarwono, Sarinah (2011) Study on bioethanol production using red seaweed Eucheuma cottonii from Bontang sea water. J Coast Dev 15:45–50

    Google Scholar 

  • Chao KP, Su YC, Chen CS (1999) Chemical composition and potential for utilization of the marine alga Rhizoclonium sp. J Appl Phycol 11:525–533

    Article  CAS  Google Scholar 

  • Chapman ARO, Craigie JS (1978) Seasonal growth in Laminaria longicruris: relations with reserve carbohydrate storage and production. Mar Biol 46:209–213

    Article  CAS  Google Scholar 

  • Chirapart A, Munkit J, Lewmanomont K (2006) Changes in yield and quality of agar from the agarophytes, Gracilaria fisheri and G. tenuistipitata var. liui cultivated in earthen ponds. Kasetsart J (Nat Sci) 40:529–540

  • Cho Y, Kim H, Kim S-K (2013) Bioethanol production from brown seaweed, Undaria pinnatifida, using NaCl acclimated yeast. Bioprocess Biosyst Eng 36:713–719

    Article  CAS  PubMed  Google Scholar 

  • Craigie JS, Wen ZC, van der Meer JP (1984) Interspecific, intraspecific and nutritionally determined variations in the composition of agars from Gracilaria spp. Bot Mar 27:55–61

    Article  CAS  Google Scholar 

  • El-Said GF, El-Sikaily A (2012) Chemical composition of some seaweed from Mediterranean Sea coast, Egypt. Environ Monit Assess. doi:10.1007/s10661-012-3009-y

    PubMed Central  Google Scholar 

  • Fasahati P, Liu JJ (2012) Process simulation of bioethanol production from brown algae. In 8th IFAC Symposium on Advanced Control of Chemical Processes, Singapore. Part 1, pp 597–602

  • Goh CS, Lee KT (2010) A visionary and conceptual macroalgae-based third-generation bioethanol (TGB) biorefinery in Sabah, Malaysia as an underlay for renewable and sustainable development. Renew Sust Energ Rev 14:842–848

    Article  CAS  Google Scholar 

  • Hernández-Garibay E, Zertuche-González JA, Pacheco-Ruíz I (2011) Isolation and chemical characterization of algal polysaccharides from the green seaweed Ulva clathrata (Roth) C. Agardh. J Appl Phycol 23:537–542

    Article  Google Scholar 

  • Horn SJ, Aasen IM, Østgaard K (2000a) Ethanol production from seaweed extract. J Ind Microbiol Biotechnol 25:249–254

    Article  CAS  Google Scholar 

  • Horn SJ, Aasen IM, Østgaard K (2000b) Production of ethanol from mannitol by Zymobacter palmae. J Ind Microbiol Biotechnol 24:51–57

    Article  CAS  Google Scholar 

  • Jang J-S, Cho Y, Jeong G-T, Kim S-K (2012) Optimization of saccharification and ethanol production by simultaneous saccharification and fermentation (SSF) from seaweed, Saccharina japonica. Bioprocess Biosyst Eng 35:11–18

    Google Scholar 

  • Kim N-J, Li H, Jung K, Chang HN, Lee PC (2011) Ethanol production from marine algal hydrolysates using Escherichia coli KO11. Bioresour Technol 102:7466–7469

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Gupta R, Kumar G, Sahoo D, Kuhad RC (2013) Bioethanol production from Gracilaria verrucosa, a red alga, in a biorefinery approach. Bioresour Technol 135:150–156

    Article  CAS  PubMed  Google Scholar 

  • Lahaye M, Robic A (2007) Structure and functional properties of ulvan, a polysaccharide from green seaweeds. Biomacromolecules 8:1765–1774

    Article  CAS  PubMed  Google Scholar 

  • Larsaaon S, Quintana-Sainz A, Reimann A, Nilvebrant NO, Jonsson LJ (2000) Influence of lignocelluloses-derived aromatic compounds on oxygen-limited growth and ethanolic fermentation by Saccharomyces cerevisiae. Appl Biochem Biotechnol 84:617–632

    Article  Google Scholar 

  • Manivannan K, Thirumaran G, Devi GK, Hemalatha A, Anantharaman P (2008) Biochemical composition of seaweeds from Mandapam coastal regions along southeast coast of India. Am-Euras J Bot 1:32–37

    Google Scholar 

  • McDermid KJ, Stuercke B (2003) Nutritional composition of edible Hawaiian seaweeds. J Appl Phycol 15:513–524

    Article  CAS  Google Scholar 

  • McDermid KJ, Stuercke B, Balazs GH (2007) Nutritional composition of marine plants in the diet of the green sea turtle (Chelonia mydas) in the Hawaiian Islands. Bull Mar Sci 81:55–71

    Google Scholar 

  • Mehta GK, Meena R, Prasad K, Ganesan M, Siddhanta AK (2010) Preparation of galactan from Gracilaria debilis and Gracilaria salicornia (Gracilariales, Rhodophyta) of Indian waters. J Appl Phycol 22:623–627

    Article  Google Scholar 

  • Mishima Y, Nguyen TD (2007) Possibility of aquatic biomass utilization in Asian countries. Retrieved from http://www.biomass-asia-workshop.jp/biomassws/04workshop/index.html on 4 September 2008

  • Munier M, Dumay J, Morançais M, Jaouen P, Fleurence J (2013) Variation in the biochemical composition of the edible seaweed Grateloupia turuturu Yamada harvested from two sampling sites on the Brittany Coast (France): the influence of storage method on the extraction of the seaweed pigment r-phycoerythrin. J Chem 2013:1–8

    Article  Google Scholar 

  • Østgaard K, Indergaard M, Markussen S, Knutsen SH, Jensen A (1993) Carbohydrate degradation and methane production during fermentation of Laminaria saccharina (Laminariales, Phaeophyceae). J Appl Phycol 5:333–342

    Article  Google Scholar 

  • Pan-utai W (2010) Ethanol production from lignocellulosic biomass by a simultaneous saccharification and fermentation process. Thesis, Kasetsart University, Bangkok

  • Raymond LP (1983) Aquatic biomass as a source of fuels and chemicals. SERI/TP-231–1699 UC Category: 61a. US Department of Energy, USA. 10p

  • Ruangchuay R, Lueangthuvapranit C, Nuchaikaew M (2010) Cultivation of Gracilaria fisheri (Xia & Abbott) Abbott, Zhang & Xia (Gracilariales, Rhodophyta) in abandoned shrimp ponds along the coast of Pattani Bay, southern Thailand. Algal Resour 3:185–192

    Google Scholar 

  • Robic A, Sassi J-F, Dion P, Lerat Y, Lahaye M (2009) Seasonal variability of physico-chemical and rheological properties of ulvan from two Ulva species (Chlorophyta) of Brittany coast. J Phycol 45:962–973

    Article  CAS  Google Scholar 

  • Roesijadi G, Jones SB, Snowden-Swan LJ, Zhu Y (2010) Macroalgae as a biomass feedstock: a preliminary analysis. The US Department of Energy under Contract DE-AC05–76RL01830. PNNL-19944, Pacific Northwest National Laboratory Richland, Washington 99352

  • Shahbazi A, Li Y (2006) Availability of crop residues as sustainable feedstock for bioethanol production in North Carolina. Appl Biochem Biotech 129–132:41–54

    Article  Google Scholar 

  • Souza BWS, Cerqueira MA, Bourbon AI, Pinheiro AC, Martins JT, Teixeira JA, Coimbra MA, Vicente AA (2012) Chemical characterization and antioxidant activity of sulfated polysaccharide from the red seaweed Gracilaria birdiae. Food Hydrocoll 27:287–292

    Article  CAS  Google Scholar 

  • Tabarsa M, Rezaei M, Ramezanpour Z, Waaland JR (2012) Chemical compositions of the marine algae Gracilaria salicornia (Rhodophyta) and Ulva lactuca (Chlorophyta) as a potential food source. J Sci Food Agric 92:2500–2506

    Article  CAS  PubMed  Google Scholar 

  • Taherzadeh MJ, Karimi K (2007) Acid-based hydrolysis processes for ethanol from lignocellulosic materials: a review. Bio Resour 2:472–499

    CAS  Google Scholar 

  • Usov AI (2011) Chapter 4—polysaccharides of the red algae. Adv Carbohydr Chem Biochem 65:115–217

    Article  CAS  PubMed  Google Scholar 

  • van der Wal H, Sperber BLHM, Houweling-Tan B, Bakker RRC, Brandenburg W, Lόpez-Contreras AM (2013) Production of acetone, butanol, and ethanol from biomass of the green seaweed Ulva lactuca. Bioresour Technol 128:431–437

    Article  PubMed  Google Scholar 

  • van Zyl WH, Lynd LR, den Haan R, McBride JE (2007) Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae. AdvBiochem Engin/Biotechnol 108:205–235

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Kasetsart University Research and Development Institute under the project “Study on yield and chemical component for ethanol production from seaweed in Thailand”. Special thanks to anonymous reviewers whose remarks helped to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anong Chirapart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chirapart, A., Praiboon, J., Puangsombat, P. et al. Chemical composition and ethanol production potential of Thai seaweed species. J Appl Phycol 26, 979–986 (2014). https://doi.org/10.1007/s10811-013-0235-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-013-0235-9

Keywords