Journal of Applied Phycology

, Volume 26, Issue 4, pp 1773–1782 | Cite as

The diversity and phylogeny of the commercially important algal class Eustigmatophyceae, including the new clade Goniochloridales

  • Karen P. Fawley
  • Marek Eliáš
  • Marvin W. Fawley
Article

Abstract

The Eustigmatophyceae is a class of yellow-green algae allied with the Chrysophyceae and other chlorophyll c possessing stramenopile (heterokont) algae. Some members of the class, especially the marine species of the genus Nannochloropsis, are under intense investigation for their potential for production of biofuels and beneficial fatty acids. The class has generally been thought to comprise a small number of genera and species, and these organisms were considered rare or infrequently encountered. In this study, we examined the phylogeny and diversity of this class by analysis of nuclear 18S rDNA sequence data. Our analysis included sequences from all the named members of the Eustigmatophyceae held in culture collections as well as a number of strains identified in culture collections as Xanthophyceae, new strains with features characteristic of the Eustigmatophyceae, and published data for uncultured DNA clones. The results of these analyses show that the Eustigmatophyceae is far more diverse than generally recognized. Two major lineages are supported in the class, the previously recognized order Eustigmatales and the new clade, Goniochloridales. Additional new lineages were also resolved within each of these major lineages; however, the results of our analyses were considered insufficient for naming these subordinate clades. Several of these lineages comprised only unnamed strains or uncultured DNA clones. Overall, our results indicate that the Eustigmatophyceae is a highly diverse class, with many new species, genera, and families awaiting taxonomic treatment.

Keywords

Biofuels Eustigmatos Goniochloris Monodopsis Monodus Nannochloropsis Fatty acids Trachydiscus Vischeria 

Notes

Acknowledgments

This work was supported by National Science Foundation grants DEB1248291, DBI 0070387, and MCB0084188 to K.P.F and M.W.F., University of Arkansas at Monticello Faculty Research Grants to K.P.F., grants from the Arkansas Space Grant Consortium to K.P.F., grants from Arkansas INBRE (funded by the National Center for Research Resources (grant number 5P20RR016460-11) and the National Institute of General Medical Sciences (grant number 8P20GM103429-11) of the National Institutes of Health) to M.W.F., the grants number P506/10/0705 and 13-33039S from the Czech Science Foundation to M.E. and by project number CZ.1.05/2.1.00/03.0 M.100 (Operational Program Research and Development for Innovations) to M.E. We thank Dr. Larry Bellot, Nikon Instruments, for the assistance with microscopy. We thank two anonymous reviewers for the helpful comments.

References

  1. Adl SM, Simpson AG, Farmer MA, Andersen RA, Anderson OR, Barta JR, Bowser SS, Brugerolle G, Fensome RA, Fredericq S, James TY, Karpov S, Kugrens P, Krug J, Lane CE, Lewis LA, Lodge J, Lynn DH, Mann DG, McCourt RM, Mendoza L, Moestrup Ø, Mozley-Standridge SE, Nerad TA, Shearer CA, Smirnov AV, Spiegel FW, Taylor MF (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol 52:399–451PubMedCrossRefGoogle Scholar
  2. Adl SM, Leander BS, Simpson AGB, Archibald JM, Anderson OR, Bass D, Bowser SS, Brugerolle G, Farmer MA, Karpov S, Kolisko M, Lane CE, Lodge DJ, Mann DG, Meisterfeld R, Mendoza L, Moestrup Ø, Mozley-Standridge SE, Smirnov AV, Spiegel F (2007) Diversity, nomenclature, and taxonomy of Protists. Syst Biol 56:684–689PubMedCrossRefGoogle Scholar
  3. Adl SM, Simpson AG, Lane CE, Lukeš J, Bass D, Bowser SS, Brown MW, Burki F, Dunthorn M, Hampl V, Heiss A, Hoppenrath M, Lara E, Le Gall L, Lynn DH, McManus H, Mitchell EA, Mozley-Stanridge SE, Parfrey LW, Pawlowski J, Rueckert S, Shadwick RS, Schoch CL, Smirnov A, Spiegel FW (2012) The revised classification of eukaryotes. J Eukaryot Microbiol 59:429–493PubMedCentralPubMedCrossRefGoogle Scholar
  4. Andersen RA, Morton SL, Sexton JP (1997) CCMP—Provasoli-Guillard National Center for Culture of Marine Phytoplankton. J Phycol 33:1–75CrossRefGoogle Scholar
  5. Apt KE, Behrens PW (1999) Commercial developments in microalgal biotechnology. J Phycol 35:215–226CrossRefGoogle Scholar
  6. Cantino PD, de Queiroz K (2010) International Code of Phylogenetic Nomenclature [PhyloCode]. Verson 4c. International Society for Phylogenetic Nomenclature. http://www.ohio.edu/phylocode/. Accessed 30 August 2013
  7. Carpinelli CE, Telatin A, Vitulo N, Forcato C, D'Angelo M, Schiavon R, Vezzi A, Giacometti GM, Morosinotto T, Valle G (2013) Chromosome scale genome assembly and transcriptome profiling of Nannochloropsis gaditana in nitrogen depletion. Mol Plant. doi: 10.1093/mp/sst120
  8. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552PubMedCrossRefGoogle Scholar
  9. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797PubMedCentralPubMedCrossRefGoogle Scholar
  10. Fawley MW, Fawley KP (2004) A simple and rapid technique for the isolation of DNA from microalgae. J Phycol 40:223–225CrossRefGoogle Scholar
  11. Fawley KP, Fawley MW (2007) Observations on the diversity and ecology of freshwater Nannochloropsis (Eustigmatophyceae), with descriptions of new taxa. Protist 158:325–336Google Scholar
  12. Fawley MW, Douglas CA, Stewart KD, Mattox KR (1990) Light-harvesting pigment-protein complexes of the Ulvophyceae (Chlorophyta): characterization and phylogenetic significance. J Phycol 26:186–195CrossRefGoogle Scholar
  13. Fawley MW, Fawley KP, Buchheim MA (2004) Molecular diversity among communities of freshwater microchlorophytes. Microb Ecol 48:489–499PubMedCrossRefGoogle Scholar
  14. Fišerová M (2012) Ultrastructure of eustigmatophycean algae. Thesis, Charles University in PragueGoogle Scholar
  15. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  16. Hegewald E, Padisák J, Friedl T (2007) Pseudotetraëdriella kamillae: taxonomy and ecology of a new member of the algal class Eustigmatophyceae (Stramenopiles). Hydrobiologia 586:107–116Google Scholar
  17. Hibberd DJ (1990) Phylum Eustigmatophyta. In: Margulis L, Corliss JO, Melkonian M, Chapman DJ (eds) Handbook of the Protoctista; the structure, cultivation, habits and life histories of the eukaryotic microorganisms and their descendants exclusive of animals, plants and fungi. Jones and Bartlett Publishers, Boston, pp 326–333Google Scholar
  18. Hibberd DJ, Leedale GF (1971) A new algal class—the Eustigmatophyceae. Taxon 20:523–525CrossRefGoogle Scholar
  19. Jinkerson RE, Radakovits R, Posewitz MC (2013) Genomic insights from the oleaginous model alga Nannochloropsis gaditana. Bioengineered 4:1–7Google Scholar
  20. Katana A, Kwiatowski J, Spalik K, Zakryś B, Szalacha E, Szymańska H (2001) Phylogenetic position of Koliella (Chlorophyta) as inferred from nuclear and chloroplast small subunit rDNA. J Phycol 37:443–451CrossRefGoogle Scholar
  21. Khozin-Goldberg I, Cohen Z (2006) The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochemistry 67:696–701Google Scholar
  22. Kilian O, Benemann CS, Niyogi KK, Vick B (2011) High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp. Proc Natl Acad Sci U S A 108:21265–21269Google Scholar
  23. Maddison DR, Maddison WP (2000) MacClade 4: analysis of phylogeny and character evolution. Sinauer Associates, Sunderland, Massachusetts, USAGoogle Scholar
  24. Neustupa J, Němcová Y (2001) Morphological and taxonomic study of three terrestrial eustigmatophycean species. Nova Hedwigia 123:373–386Google Scholar
  25. Ott DW, Oldham-Ott CK (2003) Eustigmatophyceae, Raphidophyceae, and Tribophyceae. In: Wehr JD, Sheath RG (eds) Freshwater Algae of North America. Academic Press, San Diego, California, pp 423–469CrossRefGoogle Scholar
  26. Pan K, Qin J, Li S, Dai W, Zhu B, Jin Y, Yu W, Yang G, Li D (2011) Nuclear monoploidy and asexual propagation of Nannochloropsis oceanica (Eustigmatophyceae) as revealed by its genome sequence. J Phycol 47:1425–1431Google Scholar
  27. Phillips KA, Fawley MW (2000) Diversity of coccoid algae in shallow lakes during winter. Phycologia 39:498–506CrossRefGoogle Scholar
  28. Přibyl P, Eliáš M, Cepák V, Lukavský J, Kaštánek P (2012) Zoosporogenesis, morphology, ultrastructure, pigment composition, and phylogenetic position of Trachydiscus minutus (Eustigmatophyceae, Heterokontophyta). J Phycol 48:231–242Google Scholar
  29. Prior SE, Fawley MW, Fawley KP (2009) DNA sequence analysis of freshwater Eustigmatophyceae, a potential source of essential fatty acids. J Ark Acad Sci 63:139–144Google Scholar
  30. Radakovits R, Jinkerson RE, Fuerstenberg SI, Tae H, Settlage RE, Boore JL, Posewitz MC (2012) Draft genome sequence and genetic transformation of the oleaginous alga: Nannochloropsis gaditana. Nat Commun 3:686. doi: 10.1038/ncomms1688
  31. Řezanka T, Petránková M, Cepák V, Přibyl P, Sigler K, Cajthaml T (2010) Trachydiscus minutus, a new biotechnological source of eicosapentaenoic acid. Folia Microbiol 55:265–269CrossRefGoogle Scholar
  32. Ronquist F, Teslenko M, van der Mark P, Ayres D, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542PubMedCentralPubMedCrossRefGoogle Scholar
  33. Santos LMA (1996) The Eustigmatophyceae: actual knowledge and research perspectives. Nova Hedwigia 112:391–405Google Scholar
  34. Santos LMA, Leedale GF (1995) Some notes on the ultrastructure of small azoosporic members of the algal class Eustigmatophyceae. Nova Hedwigia 60:219–225Google Scholar
  35. Schnepf E, Niemann A, Wilhelm C (1996) Pseudostaurastrum limneticum, a eustigmatophycean alga with astigmatic zoospores: Morphogenesis, fine structure, pigment composition and taxonomy. Arch Protistenkd 146:237–249Google Scholar
  36. Swofford DL (2002) PAUP*: Phylogenetic Analysis Using Parsimony (*and other methods), version 4.0 beta. Sinauer Publishing, Sunderland, Massachusetts, USAGoogle Scholar
  37. Tavaré S (1986) Some probabilistic and statistical problems in the analysis of DNA sequences. In: Miura RM (ed) Some mathematical questions in biology—DNA sequence analysis. Am. Math. Soc, Providence, RI, pp 57–86Google Scholar
  38. Vieler A, Wu G, Tsai CH, Bullard B, Cornish AJ, Harvey C, Reca IB, Thornburg C, Achawanantakun R, Buehl CJ, Campbell MS, Cavalier D, Childs KL, Clark TJ, Deshpande R, Erickson E, Ferguson AA, Handee W, Kong Q, Li X, Liu B, Lundback S, Peng C, Roston RL, Sanjaya SJP, Terbush A, Warakanont J, Zäuner S, Farre EM, Hegg EL, Jiang N, Kuo MH, Lu Y, Niyogi KK, Ohlrogge J, Osteryoung KW, Shachar-Hill Y, Sears BB, Sun Y, Takahashi H, Yandell M, Shiu SH, Benning C (2012) Genome, functional gene annotation, and nuclear transformation of the heterokont oleaginous alga Nannochloropsis oceanica CCMP1779. PLoS Genet 8:e1003064. doi: 10.1371/journal.pgen.1003064
  39. Volkman JK, Barrett SM, Blackburn SI (1999a) Fatty acids and hydroxy fatty acids in three species of freshwater eustigmatophytes. J Phycol 35:1005–1012CrossRefGoogle Scholar
  40. Volkman JK, Barrett SM, Blackburn SI (1999b) Eustigmatophyte microalgae are potential sources of C29 sterols, C22-C28 n-alcohols and C28-C32 n-alkyl diols in freshwater environments. Org Geochem 30:307–318CrossRefGoogle Scholar
  41. Wan L, Han J, Sang M, Li A, Wu H et al (2012) De novo transcriptomic analysis of an oleaginous microalga: pathway description and gene discovery for production of next-generation biofuels. PLoS ONE 7:e35142. doi: 10.1371/journal.pone.0035142 PubMedCentralPubMedCrossRefGoogle Scholar
  42. Wei L, Xin Y, Wang D, Jin X, Zhou Q, Su X, Jia J, Ning K, Chen F, Hu Q, Xu J (2013) Nannochloropsis plastid and mitochondrial phylogenomes reveal organelle diversification mechanism and intragenus phylotyping strategy in microalgae. BMC Genomics 14:534. doi: 10.1186/1471-2164-14-534 PubMedCentralPubMedCrossRefGoogle Scholar
  43. White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJU, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322Google Scholar
  44. Yang EC, Boo GH, Kim HJ, Cho SM, Boo SM, Andersen RA, Yoon HS (2012) Supermatrix data highlight the phylogenetic relationships of photosynthetic stramenopiles. Protist 163:217–231PubMedCrossRefGoogle Scholar
  45. Zwickl DJ (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Dissertation, The University of Texas at Austin, Austin, TexasGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Karen P. Fawley
    • 1
  • Marek Eliáš
    • 2
    • 3
    • 4
  • Marvin W. Fawley
    • 1
    • 5
  1. 1.School of Mathematical and Natural SciencesUniversity of Arkansas at MonticelloMonticelloUSA
  2. 2.Department of Biology and Ecology, Faculty of ScienceUniversity of OstravaOstravaCzech Republic
  3. 3.Department of Botany, Faculty of ScienceCharles University in PraguePrague 2Czech Republic
  4. 4.Department of Parasitology, Faculty of ScienceCharles University in PraguePrague 2Czech Republic
  5. 5.Department of Biological SciencesNorth Dakota State UniversityFargoUSA

Personalised recommendations