Journal of Applied Phycology

, Volume 26, Issue 2, pp 1253–1272 | Cite as

Genetic diversity of Kappaphycus Doty and Eucheuma J. Agardh (Solieriaceae, Rhodophyta) in Southeast Asia

  • Phaik Eem Lim
  • Ji Tan
  • Siew Moi Phang
  • Aluh Nikmatullah
  • Dang Diem Hong
  • H. Sunarpi
  • Anicia Q. Hurtado


The commercial importance of carrageenophytes Kappaphycus and Eucheuma is well known, with much interest in terms of cultivation, marketing, and research. Considering the many lucrative prospects, these red seaweeds were introduced into various parts of the world for farming, where merely a few were comprehensively documented. Despite being extensively cultivated throughout Southeast Asia, the genetic diversity of Kappaphycus and Eucheuma is poorly studied, where heavy reliance is placed on the use of local or commercial names for identifications. This study used the mitochondrial-encoded cox1 and cox2–3 spacer genetic markers to investigate the Kappaphycus and Eucheuma haplotypes, cultivated and wild, available throughout Southeast Asia. Concatenated cox1–cox2–3 spacer datasets were also analyzed. The near full-length cox1 gene is preferred at revealing the genetic diversity of Kappaphycus and Eucheuma, provided a larger reference database is available. Both molecular markers were capable of delineating common members of the genus Kappaphycus (i.e., Kappaphycus alvarezii, Kappaphycus striatus, and Kappaphycus cottonii) and Eucheuma denticulatum, and revealed interesting genotypes and new species which may be potential alternatives to the common cultivars as well as materials for research. The relative scarcity of Eucheuma species is discussed and future sites for sampling are recommended.


Molecular phylogenetics Kappaphycus Eucheuma cox2–3 spacer cox



The authors thank Mr. Hafiz, Mr. Hakim, Mr. Adibi Rahiman, Japson Wong, and Associate Prof. Dr. Suhaimi Md. Yasir for their valuable assistance during sampling trips in Malaysia. This study was funded in part by the MoHE–HIR grant (H-50001-00-A000025), MOSTI E-Science Fund (No. 14-02-03-4027), Department of Fisheries Malaysia (53-02-03-1062), and University of Malaya PPP (PV014/2011A). The sampling of Indonesian specimens was supported by the International Research Collaboration and International Publication from the Directorate General of Higher Education, Indonesian Ministry of Education and Culture (190/SP2H/PL/Dit.Litabmas/IV/202). The sampling of Vietnam specimens was supported by a National project belonging to the South China Sea program for Dr. Dang Diem Hong (1999–2002) entitled “Study on biology and culture technology of some seaweed in Truong Sa Archipelago, Vietnam” and the Ministry of Agriculture and Rural Development for Mr. Huynh Q. N. and Dr. Dang Diem Hong (2005–June 2007) with the title “Investigative, programming and propose the solution for culture sustainable development of Kappaphycus alvarezii Doty.”

Supplementary material

10811_2013_197_MOESM1_ESM.pdf (364 kb)
Online Resource 1 (PDF 363 kb)
10811_2013_197_MOESM2_ESM.pdf (331 kb)
Online Resource 2 (PDF 331 kb)
10811_2013_197_MOESM3_ESM.pdf (331 kb)
Online Resource 3 (PDF 331 kb)
10811_2013_197_MOESM4_ESM.pdf (458 kb)
Online Resource 4 (PDF 457 kb)


  1. Ask EI, Azanza RV (2002) Advances in cultivation technology of commercial eucheumatoid species: a review with suggestions for future research. Aquaculture 206:257–277CrossRefGoogle Scholar
  2. Ask EI, Batibasaga A, Zertuche-González JA, de San M (2003) Three decades of Kappaphycus alvarezii (Rhodophyta) introduction to non-endemic locations. Proc Int Seaweed Symp 17:49–57Google Scholar
  3. Atmadja WS, Prud’homme van Reine WF (2012) Checklist of the seaweed species biodiversity of Indonesia with their distribution and classification: Rhodophyceae. [Ceklis keanekaragaman jenis rumput laut di Indonesia dengan sebaran dan klasifikasinya merah (Rhodophyceae)]. Jakarta: Coral Reef Information and Training Centre. Coral Reef Rehabilitation and Management Programme. Indonesian Institute of Sciences (LIPI). pp. [2], i–vi, 1–72Google Scholar
  4. Barros-Barreto MBB, Marinho LC, Reis RP, Mata CS, Ferreira PCG (2013) Kappaphycus alvarezii (Gigartinales, Rhodophyta) cultivated in Brazil: is it only one species? J Appl Phycol 25:1143–1149CrossRefGoogle Scholar
  5. Bindu MS (2011) Empowerment of coastal communities in cultivation and processing of Kappaphycus alvarezii—a case study at Vizhinjam village, Kerala, India. J Appl Phycol 23:157–163CrossRefGoogle Scholar
  6. Bindu MS, Levine IA (2011) The commercial red seaweed Kappaphycus alvarezii—an overview on farming and environment. J Appl Phycol 23:789–796CrossRefGoogle Scholar
  7. Bixler HJ (1996) Recent developments in manufacturing and marketing carrageenan. Hydrobiologia 326/327:35–57CrossRefGoogle Scholar
  8. Bixler HJ, Porse H (2011) A decade of change in the seaweed hydrocolloids industry. J Appl Phycol 23:321–335CrossRefGoogle Scholar
  9. Bryceson I (2002) Coastal aquaculture developments in Tanzania: sustainable and non-sustainable experiences. Western Indian Ocean J Mar Sci 1:1–10Google Scholar
  10. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659PubMedCrossRefGoogle Scholar
  11. Collins FS, Hervey AB (1917) The algae of Bermuda. Proc Am Acad Arts Sci 53:1–195, 6 plsCrossRefGoogle Scholar
  12. Conklin KY, Kurihara A, Sherwood AR (2009) A molecular method for identification of the morphologically plastic invasive algal genera Eucheuma and Kappaphycus (Rhodophyta, Gigartinales) in Hawaii. J Appl Phycol 21:691–699CrossRefGoogle Scholar
  13. Dang DH, Hoang MH, Ngo HT, Hoang SN, Huynh QN, Tran MD (2008) Analysis of the genetic variation of Eucheuma and Kappaphycus strains in Vietnam using RAPD markers. In: Phang SM, Lewmanomont K, Lim PE (eds) Taxonomy of Southeast Asian Seaweeds. Institute of Ocean and Earth Sciences, University of Malaya, Kuala LumpurGoogle Scholar
  14. Doty MS (1987) The production and use of Eucheuma. In: Doty MS, Caddy JF, Santelices B (eds) Case studies of seven commercial seaweed resources. FAO Fish. Tech. Pap., Rome, pp 123–161Google Scholar
  15. Doty MS (1988) Prodomus Ad Systematica Eucheumatoideorum: a tribe of commercial seaweeds related to Eucheuma (Solieriaceae, Gigartinales). In: Abott IA (ed) Taxonomy of economic seaweeds. California Sea Grant Program, La Jolla, pp 47–61Google Scholar
  16. Doty MS, Alvarez VB (1975) Status, problems, advances and economics of Eucheuma farms. Mar Tech Soc J 9:30–35Google Scholar
  17. Doty MS, Norris JN (1985) Eucheuma species (Solieriaceae, Rhodophyta) that are major sources of carrageenan. In: Abott IA, Norris JN (eds) Taxonomy of economic seaweeds: with reference to some Pacific and Caribbean species. California Sea Grant College Program, La Jolla, pp 47–61Google Scholar
  18. Fredericq S, Freshwater DW, Hommersand MH (1999) Observations on the phylogenetic systematics and biogeography of the Solieriaceae (Gigartinales, Rhodophyta) inferred from rbcL sequences and morphological evidence. Hydrobiologia 398/399:25–38CrossRefGoogle Scholar
  19. Freshwater DW, Fredericq S, Butler BS, Hommersand MH, Chase MW (1994) A gene phylogeny of the red algae (Rhodophyta) based on plastid rbcL. Proc Natl Acad Sci 91:7281–7285PubMedCentralPubMedCrossRefGoogle Scholar
  20. Freshwater DW, Tudor K, O’Shaughnessy K, Wysor B (2010) DNA barcoding in the red algal order Gelidiales: comparison of COI with rbcL and verification of the "barcoding gap". Cryptogamie Algol 31:435–449Google Scholar
  21. Ganzon-Fortes ET, Trono GC, Villanueva RD, Romero JB, Montaño MNE (2012) ‘Endong’, a rare variety of the farmed carrageenophyte Eucheuma denticulatum (Burman) Collins & Hervey from the Philippines. J Appl Phycol 24:1107–1111CrossRefGoogle Scholar
  22. Geraldino PJL, Yang EC, Boo SM (2006) Morphology and molecular phylogeny of Hypnea flexicaulis (Gigartinales, Rhodophyta) from Korea. Algae 21:417–423CrossRefGoogle Scholar
  23. Geraldino PJL, Yang EC, Kim MS, Boo SM (2009) Systematics of Hypnea asiatica sp. nov. (Hypneaceae, Rhodophyta) based on morphology and nrDNA SSU, plastid rbcL, and mitochondrial cox1. Taxon 58:606–616Google Scholar
  24. Green AL, Mous PJ (2008) Delineating the Coral Triangle, its ecoregions and functional seascapes. Version 5.0. TNC Coral Triangle Program Report 1/08. 44ppGoogle Scholar
  25. Guiry MD, Guiry GM (2013) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway.
  26. Halling C, Wikström SA, Lilliesköld-Sjöö G, Mörk E, Lundsør E, Zuccarello GC (2013) Introduction of Asian strains and low genetic variation in farmed seaweeds: indications for new management practices. J Appl Phycol 25:89–95CrossRefGoogle Scholar
  27. Hammann M, Wang G, Rickert E, Boo SM, Weinberger F (2013) Invasion success of the seaweed Gracilaria vermiculophylla correlates with low palatability. Mar Ecol Prog Ser 486:93–103CrossRefGoogle Scholar
  28. Hayashi L, Oliveira EC, Bleicher-Lhonneur G, Boulenguer P, Pereira RTL, Seckendorff R, Shimoda VT, Leflamand A, Vallée P, Critchley AT (2007) The effects of selected cultivation conditions on the carrageenan characteristics of Kappaphycus alvarezii (Rhodophyta, Solieriaceae) in Ubatuba Bay, São Paulo, Brazil. J Appl Phycol 19:505–511CrossRefGoogle Scholar
  29. Huelsenbeck JP, Ronquist F, Nielsen R, Bollback JP (2001) Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294:2310–23114PubMedCrossRefGoogle Scholar
  30. Hurtado AQ, Agbayani RF, Sanares R, Castro-Mallare MTR (2001) The seasonality and economic feasibility of cultivating Kappaphycus alvarezii in Panagatan Cays, Caluya, Antique, Philippines. Aquaculture 199:295–310CrossRefGoogle Scholar
  31. Kim MS, Yang MY, Cho GY (2010) Applying DNA barcoding to Korean Gracilariaceae (Rhodophyta). Cryptogamie Algol 31:387–401Google Scholar
  32. Largo DB (2006) Diseases in cultivated seaweeds in the Philippines: is it an issue among seaweed industry players? In: Phang SM, Critchley AT, Ang POJ (eds) Advances in seaweed cultivation and utilization in Asia. University of Malaya Maritime Research Centre, University of Malaya, Kuala Lumpur, pp 61–70Google Scholar
  33. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) ClustalW and ClustalX version 2.0. Bioinformatics 23:2947–2948PubMedCrossRefGoogle Scholar
  34. Le Gall L, Saunders GW (2010) DNA barcoding is a powerful tool to uncover algal diversity: a case study of the Phyllophoraceae (Gigartinales, Rhodophyta) in the Canadian flora. J Phycol 46:374–389CrossRefGoogle Scholar
  35. Munoz J, Freile-Pelegrin Y, Robledo D (2004) Mariculture of Kappaphycus alvarezii (Rhodophyta, Solieriaceae) color strains in tropical waters of Yucatán, México. Aquaculture 239:161–177CrossRefGoogle Scholar
  36. Neish IC (2003) The ABC of Eucheuma seaplant production. Agronomy, biology and crop-handling of Betaphycus, Eucheuma and Kappaphycus the Gelatinae, Spinosum and Cottonii of commerce, SuriaLink Monograph 1-0703 version CGoogle Scholar
  37. Nguyen HD, Huynh QN (1995) Species of Eucheuma and Kappaphycus in Vietnam. In: Abott IA (ed) Taxonomy of economic seaweeds, vol 5. California Sea Grant College System, La Jolla, pp 229–235Google Scholar
  38. Paula EJ, Pereira R, Ohno M (1999) Strain selection in Kappaphycus alvarezii var. alvarezii (Solieriaceae, Rhodophyta) using tetraspore progeny. J Appl Phycol 11:111–121CrossRefGoogle Scholar
  39. Phang SM, Yeong HY, Lim PE, Nor ARM, Gan KT (2010) Commercial varieties of Kappaphycus and Eucheuma in Malaysia. Malays J Sci 29:214–223Google Scholar
  40. Pickering T (2006) Advances in seaweed aquaculture among Pacific Island countries. J Appl Phycol 18:227–234CrossRefGoogle Scholar
  41. Pickering TD, Skelton P, Sulu RJ (2007) Intentional introductions of commercially harvested alien seaweeds. Bot Mar 50:338–350CrossRefGoogle Scholar
  42. Robba L, Russell SJ, Barker GL, Brodie J (2006) Assessing the use of the mitochondrial cox1 marker for use in DNA barcoding of red algae (Rhodophyta). Am J Bot 93:1101–1108PubMedCrossRefGoogle Scholar
  43. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  44. Russell DJ (1983) Ecology of imported red seaweed Kappaphycus alvarezii (E. striatum Schmitz) on Coconut Island, Oahu, Hawaii. Pac Sci 37:87–107Google Scholar
  45. Sade A (2006) Seaweed industry in Sabah, East Malaysia. In: Phang SM, Critchley AT, Ang POJ (eds) Advances in seaweed cultivation and utilization in Asia. University of Malaya Maritime Research Centre, University of Malaya, Kuala Lumpur, pp 41–52Google Scholar
  46. Saunders GW (2005) Applying DNA barcoding to red macroalgae: a preliminary appraisal holds promise for future applications. Phil Trans Roy Soc B 360:1879–1888CrossRefGoogle Scholar
  47. Saunders GW (2008) A DNA barcode examination of the red algae family Dumontiaceae (Gigartinales, Florideophyceae) in Canadian waters reveals substantial cryptic species diversity. 1. The foliose Dilsea–Neodilsea complex and Weeksia. Botany 86:773–789CrossRefGoogle Scholar
  48. Saunders GW (2009) Routine DNA barcoding of Canadian Gracilariales (Rhodophyta) reveals the invasive species Gracilaria vermiculophylla in British Columbia. Mol Ecol Resour 9:140–150PubMedCrossRefGoogle Scholar
  49. Schwarz G (1978) Estimating the dimension of a model. Ann Statist 6:461–464CrossRefGoogle Scholar
  50. Silva PC, Meñez EG, Moe RL (1987) Catalog of the benthic marine algae of the Philippines. Smithsonian Contrib Mar Sci 27:1–179Google Scholar
  51. Silva PC, Basson PW, Moe RL (1996) Catalogue of the benthic marine algae of the Indian Ocean. Univ Calif Publ Bot 79:1–1280Google Scholar
  52. Silvestro D, Michalak I (2012) raxmlGUI: a graphical front-end for RAxML. Org Divers Evol 12:335–337CrossRefGoogle Scholar
  53. Swofford DL (2003) PAUP*. Phylogenetic Analysis Using Parsimony (* and other methods). Version 4. Sinauer, SunderlandGoogle Scholar
  54. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCentralPubMedCrossRefGoogle Scholar
  55. Tan J, Lim PE, Phang SM, Hong DD, Sunarpi H, Hurtado AQ (2012) Assessment of four molecular markers as potential DNA barcodes for red algae Kappaphycus Doty and Eucheuma J. Agardh (Solieriaceae, Rhodophyta). PLoS ONE 7(12):e52905. doi: 10.1371/journal.pone.0052905 PubMedCentralPubMedCrossRefGoogle Scholar
  56. Tan J, Lim PE, Phang SM (2013) Phylogenetic relationship of Kappaphycus Doty and Eucheuma J. Agardh (Solieraceae, Rhodophyta) in Malaysia. J Appl Phycol 25:13–29CrossRefGoogle Scholar
  57. Tanabe AS (2011) Kakusan4 and Aminosan: two programs for comparing nonpartitioned, proportional and separate models for combined molecular phylogenetic analyses of multilocus sequence data. Mol Ecol Resour 11:914–921PubMedCrossRefGoogle Scholar
  58. Trono GC (1992) Eucheuma and Kappaphycus: taxonomy and cultivation. Bull Mar Sci Fish 12:51–65Google Scholar
  59. Villanueva RD, Romero JB, Montaño MNE, de la Peña PO (2011) Harvest optimization of four Kappaphycus species from the Philippines. Biomass Bioenergy 35:1311–1316CrossRefGoogle Scholar
  60. Weber-van Bosse A (1928) Liste des algues du Siboga, IV. Rhodophyceae. Troisème partie. Gigartinales et Rhodymeniales et tableau de la distribution des Chlorophycées, Phaeophycées et Rhodophycées de l’Archipel Malaisien., vol 59d. LeidenGoogle Scholar
  61. Wiriyadamrikul J, Park JK, Lewmanomont K, Boo SM (2010) Additional records of Gelidiella fanii (Gelidiales, Rhodophyta) from the western Pacific based on morphology, rbcL and cox1 analyses. Bot Mar 53:343–350CrossRefGoogle Scholar
  62. Yang EC, Kim MS, Geraldino PJL, Sahoo D, Shin J-A, Boo SM (2008) Mitochondrial cox1 and plastid rbcL genes of Gracilaria vermiculophylla (Gracilariaceae, Rhodophyta). J Appl Phycol 20:161–168CrossRefGoogle Scholar
  63. Yow Y-Y, Lim P-E, Phang S-M (2011) Genetic diversity of Gracilaria changii (Gracilariaceae, Rhodophyta) from west coast, Peninsular Malaysia based on mitochondrial cox1 gene analysis. J Appl Phycol 23:219–226CrossRefGoogle Scholar
  64. Yow Y-Y, Lim P-E, Phang S-M (2013) Assessing the use of mitochondrial cox1 gene and cox2–3 spacer for genetic diversity study of Malaysian Gracilaria changii (Gracilariaceae, Rhodophyta) from Peninsular Malaysia. J Appl Phycol 25:831–838CrossRefGoogle Scholar
  65. Zhao S, He P (2011) Molecular identification based on ITS sequences for Kappaphycus and Eucheuma cultivated in China. Chin J Oceanol Limnol 29:1287–1296CrossRefGoogle Scholar
  66. Zuccarello GC, Burger G, West JA, King RJ (1999) A mitochondrial marker for red algal intraspecific relationships. Mol Ecol 8:1443–1447PubMedCrossRefGoogle Scholar
  67. Zuccarello GC, Critchley AT, Smith J, Sieber V, Lhonneur GB, West JA (2006) Systematics and genetic variation in commercial Kappaphycus and Eucheuma (Solieriaceae, Rhodophyta). J Appl Phycol 18:643–651CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Phaik Eem Lim
    • 1
    • 2
  • Ji Tan
    • 1
    • 2
  • Siew Moi Phang
    • 1
    • 2
  • Aluh Nikmatullah
    • 3
  • Dang Diem Hong
    • 4
  • H. Sunarpi
    • 3
  • Anicia Q. Hurtado
    • 5
  1. 1.Institute of Biological SciencesUniversity of MalayaKuala LumpurMalaysia
  2. 2.Institute of Ocean and Earth SciencesUniversity of MalayaKuala LumpurMalaysia
  3. 3.Faculty of Science and MathematicsMataram UniversityMataramIndonesia
  4. 4.Institute of BiotechnologyVietnamese Academy of Science and TechnologyHanoiVietnam
  5. 5.Integrated Services for the Development of Aquaculture and FisheriesIloilo CityPhilippines

Personalised recommendations