Skip to main content
Log in

Purification of biosilica from living diatoms by a two-step acid cleaning and baking method

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Due to their sustainability, intact cell walls, availability of pure cultures, and others, living diatoms show a lot of promise for the application in various fields in particular for micro/nano-devices. In order to purify the biosilica structures of diatoms called frustules, a two-step acid cleaning and baking method was employed. By this path, organic matter and inorganic impurities can be removed very effectively. In addition, the highest quality of frustules was achieved when the samples were cleaned in an excess of boiling 10~15 % HCl and subsequently heated to 600 °C at a heating rate of 3 °C min−1 for 6 h. In our operation, the native frustule morphology was maintained completely, and dry frustules with more than 90 % SiO2 in weight can be obtained, and furthermore, the surface area of them reached a good value of 48.47 m2 g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Brunner E, Gröger C, Lutz K, Richthammer P, Spinde K, Sumper M (2009) Analytical studies of silica biomineralization: towards an understanding of silica processing by diatoms. Appl Microbiol Biotechnol 84:607–616

    Article  CAS  PubMed  Google Scholar 

  • De Stefano L, Rendina I, De Stefano M, Bismuto A, Maddalena P (2005) Marine diatoms as optical chemical sensors. Appl Phys Lett 87:233902

    Article  Google Scholar 

  • De Stefano L, Rotiroti L, De Stefano M, Lamberti A, Lettieri S, Setaro A, Maddalena P (2009) Marine diatoms as optical biosensors. Biosens Bioelectron 24:1580–1584

    Article  PubMed  Google Scholar 

  • Dudley S, Kalem T, Akinc M (2006) Conversion of SiO2 diatom frustules to BaTiO3 and SrTiO3. J Am Ceram Soc 89:2434–2439

    Article  CAS  Google Scholar 

  • Fan TX, Chow SK, Zhang D (2009) Biomorphic mineralization: from biology to materials. Prog Mater Sci 54:542–659

    Article  CAS  Google Scholar 

  • Gale DK, Gutu T, Jiao J, Chang CH, Rorrer GL (2009) Photoluminescence detection of biomolecules by antibody-functionalized diatom biosilica. Adv Funct Mater 19:926–933

    Article  CAS  Google Scholar 

  • Gürel A, Yıldız A (2007) Diatom communities, lithofacies characteristics and paleoenvironmental interpretation of Pliocene diatomite deposits in the Ihlara–Selime plain (Aksaray, Central Anatolia, Turkey). J Asian Earth Sci 30:170–180

    Article  Google Scholar 

  • Kröger N, Lorenz S, Brunner E, Sumper M (2002) Self-assembly of highly phosphorylated silaffins and their function in biosilica morphogenesis. Science 298:584–586

    Article  PubMed  Google Scholar 

  • Kröger N, Poulsen N (2008) Diatoms-from cell wall biogenesis to nanotechnology. Annu Rev Genet 42:83–107

    Article  PubMed  Google Scholar 

  • Lee DH, Wang W, Gutu T, Jeffryes C, Rorrer GL, Jiao J, Chang CH (2008) Biogenic silica based Zn2SiO4:Mn2+ and Y2SiO5:Eu3+ phosphor layers patterned by inkjet printing process. J Mater Chem 18:3633–3635

    Article  CAS  Google Scholar 

  • Lettieri S, Setaro A, De Stefano L, De Stefano M, Maddalena P (2008) The gas-detection properties of light-emitting diatoms. Adv Funct Mater 18:1257–1264

    Article  CAS  Google Scholar 

  • Li Y, Chian W, Wang X, Sha W, Zhang Y, Jiang W (2011) Coordination assembly and characterization of red-emitting europium (III) organic/inorganic polymeric hybrids. Photochem Photobiol 87:618–625

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Fan T, Zhou H, Zhang D, Gong X, Guo Q, Ogawa H (2007) Synthesis of ZnFe2O4/SiO2 composites derived from a diatomite template. Bioinspir Biomim 2:30–35

    Article  CAS  PubMed  Google Scholar 

  • Losic D, Mitchell JG, Voelcker NH (2009) Diatomaceous lessons in nanotechnology and advanced materials. Adv Mater 21:2947–2958

    Article  CAS  Google Scholar 

  • Morley DW, Leng MJ, Mackay AW, Sloane HJ, Rioual P, Battarbee RW (2004) Cleaning of lake sediment samples for diatom oxygen isotope analysis. J Paleolimnol 31:391–401

    Article  Google Scholar 

  • Nurachman Z, Anita S, Anward EE, Novirani G, Mangindaan B, Gandasasmita S, Syah YM, Panggabean LMG, Suantika G (2012) Oil productivity of the tropical marine diatom Thalassiosira sp. Bioresour Technol 108:240–244

    Article  CAS  PubMed  Google Scholar 

  • Pahl SL, Lewis DM, King KD, Chen F (2012) Heterotrophic growth and nutritional aspects of the diatom Cyclotella cryptica (Bacillariophyceae): effect of nitrogen source and concentration. J Appl Phycol 24:301–307

    Article  CAS  Google Scholar 

  • Qin T, Gutu T, Jiao J, Chang CH, Rorrer GL (2008) Photoluminescence of silica nanostructures from bioreactor culture of marine diatom Nitzschia frustulum. J Nanosci Nanotechno 8:2392–2398

    Article  CAS  Google Scholar 

  • Sumper M (2002) A phase separation model for the nanopatterning of diatom biosilica. Science 295:2430–2433

    Article  CAS  PubMed  Google Scholar 

  • Sumper M, Brunner E (2006) Learning from diatoms: nature's tools for the production of nanostructured silica. Adv Funct Mater 16:17–26

    Article  CAS  Google Scholar 

  • Swann GE, Leng MJ (2009) A review of diatom δ18O in palaeoceanography. Quaternary Sci Rev 28:384–398

    Article  Google Scholar 

  • Umemura K, Noguchi Y, Ichinose T, Hirose Y, Mayama S (2010) Morphology and physical-chemical properties of baked nanoporous frustules. J Nanosci Nanotechnol 10:5220–5224

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zhang D, Cai J, Pan J, Chen M, Li A, Jiang Y (2012) Biosilica structures obtained from Nitzschia, Ditylum, Skeletonema, and Coscinodiscus diatom by a filtration-aided acid cleaning method. Appl Microbiol Biotechnol 95:1165–1178

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Cai J, Jiang Y, Jiang X, Zhang D (2013) Preparation of biosilica structures from frustules of diatoms and their applications: current state and perspectives. Appl Microbiol Biotechnol 97:453–460

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Wang Y, Pan J, Cai J (2010) Separation of diatom valves and girdle bands from Coscinodiscus diatomite by settling method. J Mater Sci 45:5736–5741

    Article  CAS  Google Scholar 

  • Zhang G, Jiang W, Wang L, Liao X, Liu P, Deng X, Li J (2013) Preparation of silicate-based red phosphors with a patterned nanostructure via metabolic insertion of europium in marine diatoms. Mater Lett 110:253–255

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the 863 project under Grant No.2012AA03A610, Hainan University Research Fund and “211” innovation platform of Hainan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangyun Deng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, W., Luo, S., Liu, P. et al. Purification of biosilica from living diatoms by a two-step acid cleaning and baking method. J Appl Phycol 26, 1511–1518 (2014). https://doi.org/10.1007/s10811-013-0192-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-013-0192-3

Keywords

Navigation