Skip to main content
Log in

Carbon limitation enhances CO2 concentrating mechanism but reduces trichome size in Arthrospira platensis (cyanobacterium)

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Arthrospira species grow well under highly enriched inorganic carbon concentrations, but little is known on the effects of inorganic carbon (Ci) limitation on its physiological performance. When Arthrospira platensis D-0083 was grown in a modified medium without NaHCO3 under ambient air of 380 ppm CO2, its trichomes became disassembled while the growth and photosynthetic rates were severely reduced. Phycocyanin and allophycocyanin contents decreased but the carotenoid content increased under the Ci limitation. Compared with the cells grown in Zarrouk medium, the trichomes grown under the Ci limitation increased their photosynthetic apparent affinity for Ci by about 14 times but photochemical quenching capacity was reduced. It appeared that A. platensis increased its CO2 concentrating mechanism by inducing HCO3 transporters and reducing the trichome size which increased filamentous surface to volume ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allahverdiyeva Y, Mamedov F, Mäenpää P, Vass I, Aro EM (2005) Modulation of photosynthetic electron transport in the absence of terminal electron acceptors: characterization of the rbcL deletion mutant of tobacco. Biochim Biophys Acta 1709:69–83

    Article  CAS  PubMed  Google Scholar 

  • Badger MR, Price GD (2003) CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J Exp Bot 54:609–622

    Article  CAS  PubMed  Google Scholar 

  • Badger MR, Price GD, Long BM, Woodger FJ (2006) The environmental plasticity and ecological genomics of the cyanobacterial CO2 concentration mechanism. J Exp Bot 57:249–265

    Article  CAS  PubMed  Google Scholar 

  • Beardall J (1991) Effects of photon flux density on the “CO2 concentrating mechanism” of the cyanobaterium Anabaena variabilis. J Plankton Res 13:133–141

    Google Scholar 

  • Beardall J, Johnston AM, Raven JA (1998) Environmental regulation of the CO2 concentrating mechanism in cyanobacteria and microalgae. Can J Bot 76:1010–1017

    Google Scholar 

  • Beardall J, Sobrino C, Stojkovic S (2009) Interactions between the impacts of ultraviolet radiation, elevated CO2, and nutrient limitation on marine primary producers. Photochem Photobiol Sci 8:1257–1265

    Article  CAS  PubMed  Google Scholar 

  • Bennet A, Bogard L (1973) Complementary chromatic adaptation in blue-green alga. J Cell Biol 58:419–435

    Article  Google Scholar 

  • Benschop JJ, Badger MR, Price GD (2003) Characterisation of CO2 and HCO3 uptake in the cyanobacterium Synechocystis sp. PCC6803. Photosynth Res 77:117–126

    Article  CAS  PubMed  Google Scholar 

  • Binaghi L, Borghi AD, Lodi A, Converti A, Borghi MD (2003) Batch and fed-batch uptake of carbon dioxide by Spirulina platensis. Process Biochem 38:1341–1346

    Article  CAS  Google Scholar 

  • Campbell D, Hurry V, Clake AK, Gustasson P, Öquist G (1998) Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. Microbiol Mol Biol Rev 62:667–683

    CAS  PubMed Central  PubMed  Google Scholar 

  • Davison PA, Hunter CN, Horton P (2002) Over expression of ß-carotene hydroxylase enhances stress tolerance in Arabidopsis. Nature 418:203–206

    Article  CAS  PubMed  Google Scholar 

  • Dickson AG (1990) Standard potential of the reaction: AgCl(s) + ½ H2(g) = Ag(s) + HCl(aq), and the standard acidity constant of the ion HSO4 in synthetic seawater from 273.15 to 318.15 K. J Chem Thermodyn 22:113–127

    Article  CAS  Google Scholar 

  • Eisenhut M, Aguirre von Wobeser E, Jonas L, Schubert H, Ibelings BW, Bauwe H, Matthijs HC, Hagemann M (2007) Long-term response toward inorganic carbon limitation in wild type and glycolate turnover mutants of the cyanobacterium Synechocystis sp. strain PCC 6803. Plant Physiol 144:1946–1959

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gao K, Helbling EW, Häder D-P, Hutchins DA (2012) Response of marine primary producers to interactions between ocean acidification, solar radiation, and warming. Mar Ecol Prog Ser 470:167–189

    Article  CAS  Google Scholar 

  • Giordano M, Beardall J, Raven JA (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol 56:99–131

    Article  CAS  PubMed  Google Scholar 

  • Gordillo FJL, Jiménez C, Figuerroa FL, Niell FX (1999) Effects of increased atmospheric CO2 and N supply on photosynthesis, growth and cell composition of the cyanobacterium Spirulina platensis. J Appl Phycol 10:461–469

    Article  Google Scholar 

  • Kaplan A (1981) Photoinhibition in Spirulina platensis: response of photosynthesis and HCO3 uptake capability to CO2-depleted conditions. J Exp Bot 32:669–677

    Article  CAS  Google Scholar 

  • Kaplan A, Reinhold L (1999) CO2 concentrating mechanisms in photosynthetic microorganisms. Annu Rev Plant Physiol Plant Mol Biol 50:539–559

    Article  CAS  PubMed  Google Scholar 

  • Kaplan-Levy RN, Hadas O, Summers ML, Rücker J, Sukenik A (2010) Akinetes: dormant cells of cyanobacteria. In: Lubzens E, Cerda J, Clark M (eds) Dormancy and resistance in harsh environments. Springer, Berlin, pp 5–27

    Chapter  Google Scholar 

  • Lewis E, Wallace DWR (1998) Program developed for CO2 system calculations. ORNL/CDIAC-105. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory. US Department of Energy, Oak Ridge, Tennessee

    Google Scholar 

  • Long SP, Humphries S, Falkwski PG (1994) Photoinhibition of photosynthesis in nature. Annu Rev Plant Physiol Plant Mol Biol 45:633–662

    Article  CAS  Google Scholar 

  • Ma Z, Gao K (2009) Photoregulation of morphological structure and its physiological relevance in the cyanobacterium Arthrospira (Spirulina) platensis. Planta 230:329–337

    Article  CAS  PubMed  Google Scholar 

  • Ma Z, Gao K (2010) Spiral breakage and photoinhibition of Arthrospira platensis (Cyanophyta) caused by accumulation of reactive oxygen species under solar radiation. Environ Exp Bot 68:208–213

    Article  CAS  Google Scholar 

  • Markou G, Georgakahis D (2011) Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters: a review. Appl Energy 88:3389–3401

    Article  CAS  Google Scholar 

  • Matsuda Y, Hara T, Colman B (2001) Regulation of the induction of bicarbonate uptake by dissolved CO2 in the marine, Phaeodactylum triconutum. Plant Cell Environ 24:611–620

    Article  CAS  Google Scholar 

  • Mattoo AK, Giardi MT, Raskind A, Edelman M (1999) Dynamic metabolism of photosystem II reaction center proteins and pigments. Physiol Plant 107:454–461

    Article  CAS  Google Scholar 

  • McGinn PJ, Price GD, Maleszka R, Badger MR (2003) Inorganic carbon limitation and light control the expression of transcripts related to the CO2-concentrating mechanism in the cyanobacterium Synechosystis sp. strain PCC6803. Plant Physiol 132:218–229

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Murata N, Takahashi S, Nishiyama Y, Allakhverdiew SI (2007) Photoinhibition of photosystem II under environmental stress. Biochim Biophys Acta 1767:414–421

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama Y, Allakhverdiev SI, Murata N (2005) Inhibition of the repair of photosystem II by oxidative stress in cyanobacteria. Photosynth Res 84:1–7

    Article  CAS  PubMed  Google Scholar 

  • Ogawa T, Kaplan A (2003) Inorganic carbon acquisition systems in cyanobacteria. Photosynth Res 77:105–115

    Article  CAS  PubMed  Google Scholar 

  • Ogawa T, Miyano A, Inoue Y (1985) Photosystem-I-driven inorganic carbon transport in the cyanobaterium, Anacystis nidulans. Biochim Biophys Acta 808:74–75

    Google Scholar 

  • Palmqvist K, Sundblad L-G, Wingsle G, Samuelsson G (1990) Acclimation of photosynthetic light reactions during induction of inorganic carbon accumulation in the green alga Chlamydomonas reinbardtii. Plant Physiol 94:357–366

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Parsons TR, Strickland JDH (1963) Discussion of spectrophotometric determination of marine plant pigments, with revised equation for ascertaining chlorophylls and carotenoids. J Mar Res 21:155–163

    CAS  Google Scholar 

  • Porra RJ (2002) The chequered history of the development and use of simultaneous equations for the determination of chlorophylls a and b. Photosynth Res 73:149–156

    Article  CAS  PubMed  Google Scholar 

  • Price GD, Badger MR, Woodger FJ, Long BM (2008) Advances in understanding the cyanobacterial CO2-concentrating-mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants. J Exp Bot 59:1441–1461

    Article  CAS  PubMed  Google Scholar 

  • Qiu B, Liu J (2004) Utilization of inorganic carbon in the edible cyanobacterium Ge-Xian-Mi (Nostoc) and its role in alleviating photo-inhibition. Plant Cell Environ 27:1447–1458

    Article  CAS  Google Scholar 

  • Rastogi RP, Singh SP, Hader D-P, Sinha RP (2010) Detection of reactive oxygen species (ROS) by the oxidant-sensing probe 2′, 7′-dichlorodihydrofluorescein diacetate in the cyanobacterium Anabaena variabilis PCC 7937. Biochem Biophys Res Commun 397:603–607

    Article  CAS  PubMed  Google Scholar 

  • Raven JA, Giordano M, Beardall J, Maberly SC (2011) Algal and aquatic plant carbon concentrating mechanisms in relation to environmental change. Photosynth Res 109:281–296

    Article  CAS  PubMed  Google Scholar 

  • Roy RN, Roy LN, Vogel KM, Porter-Moore C, Pearson T, Good CE, Millero FJ, Campbell DM (1993) The dissociation constants of carbonic acid in seawater at salinities 5 to 45 and temperature 0 to 45 °C. Mar Chem 44:249–267

    Article  CAS  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarkli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot. 26 pp. doi:10.1155/2012/217037

  • Sili C, Torzillo G, Vonshak A (2012) Arthrospira (Spirulina). In: Whitton BA (ed) Ecology of cyanobacteria II: their diversity in space and time. Springer, Dordrecht, pp 677–705

    Chapter  Google Scholar 

  • Singh SP, Montgomery B (2011) Determining cell shape: adaptive regulation of cyanobacterial cellular differentiation and morphology. Trends Microbiol 19:278–285

    Article  CAS  PubMed  Google Scholar 

  • Takahashi S, Murata N (2008) How do environmental stresses accelerate photoinhibition? Trends Plant Sci 13:178–182

    Article  CAS  PubMed  Google Scholar 

  • Tchernov D, Hassidium M, Luz B, Sukenik A, Reinhold L, Kaplan A (1997) Sustained net CO2 evolution during photosynthesis by marine microorganisms. Curr Biol 7:723–728

    Article  CAS  PubMed  Google Scholar 

  • Tomaselli L, Giovannetti L, Margheri MC (1981) On the mechanism of trichome breakage in Spirulina platensis and S. maxima. Ann Microbiol 31:27–34

    Google Scholar 

  • Torzillo G, Vonshak A (2003) Biotechnology of algal mass cultivation. In: Fingerman M, Nagabhushanam R (eds) Recent advances in marine biotechnology. Biomaterials and bioprocessing. Science Publishers, Plymouth, pp 45–77

    Google Scholar 

  • Woodger FJ, Badger MR, Price GD (2003) Inorganic carbon limitation induces transcripts encoding components of the CO2-concentrating mechanism in Synechococcus sp. PCC7942 through a redox-independent pathway. Plant Physiol 133:2069–2080

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu H, Gao K, Villafañe V, Watanabe T, Helbling EW (2005) Effects of solar UV radiation on morphology and photosynthesis of the filamentous cyanobacterium Arthrospira platensis. Appl Environ Microbiol 71:5004–5013

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zarrouk C (1966) Contribution a l'etude d' une cyanophyceé. Influence de diverse facteurs physiques et chimiques sur la croissance et la photosynthese de Spirulina maxima (Setch et Gardner) Geitler. Ph. D. thesis, University of Paris, France, pp 4–5

Download references

Acknowledgments

This study was funded by the National Natural Science Foundation (no. 31170338), Special Prophase Foundation of National Basic Research Programs of China (no. 2012CB426510), Program for Changjiang Scholars and Innovative Research Team (IRT0941) and China-Japan collaboration project from MOST (S2012GR0290), and Zhejiang Provincial Natural Science Foundation (LZ12C03001). The authors thank Professor Joselito M. Arocena for his help in English editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunshan Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, Z., Gao, K. Carbon limitation enhances CO2 concentrating mechanism but reduces trichome size in Arthrospira platensis (cyanobacterium). J Appl Phycol 26, 1465–1472 (2014). https://doi.org/10.1007/s10811-013-0181-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-013-0181-6

Keywords

Navigation