Skip to main content

Advertisement

Log in

Non-destructive hydrocarbon extraction from Botryococcus braunii BOT-22 (race B)

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

There is worldwide interest in developing algal biofuel. One main reason for the lack of success so far in producing a sustainable transport fuel from microalgae is the high cost of biomass processing, especially dewatering and oil extraction. There is also a significant cost involved in the energy content of the nutrient fertilisers required for biomass production. Non-destructive oil extraction or “milking” from algae biomass has the potential to bypass all of these hurdles. Using a “milking” strategy means that there would be no need for (a) biomass dewatering, (b) breaking cells for oil extraction and (c) addition of nutrients to the culture, resulting in a significant reduction in energy and fertiliser cost involved in production of biofuel from algae. We make use of the natural tendency of Botryococcus to produce external hydrocarbon in the extracellular matrix. In current study, we showed that external hydrocarbon from Botryococcus braunii BOT-22 can be non-destructively extracted using n-heptane (optimum contact time with n-heptane = 20 min). We were able to recover almost the entire de novo-produced external hydrocarbons at 5- and 11-day intervals when the culture was maintained with or without 1 % CO2 addition, respectively. This repeated non-destructive extraction of external hydrocarbon of B. braunii was possible for up to 70 days when 1 % CO2 was supplied to the culture. When CO2 was limited, a 70 % lower external hydrocarbon productivity was achieved using the same process. Although the productivity of external hydrocarbon of 9.33 mg L−1 day−1 of the “milked” culture is low in these un-optimised cultures, it was 1.3 ± 0.2-fold higher compared with that of a conventional semicontinuous culture, showing the potential of this method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ackman RG (1991) Application of thin-layer chromatography separation: neutral lipids. In: Perkins EG (ed) Analyses of fats, oils and lipoproteins. American Oil Chemists Society, Champaign, pp 60–82

    Google Scholar 

  • An J-Y, Sim S-J, Kim B-W, Lee JS (2004) Improvement of hydrocarbon recovery by two-stage cell-recycle extraction in the cultivation of Botryococcus braunii. J Microbiol Biotechnol 14:932–937

    CAS  Google Scholar 

  • Banerjee A, Sharma R, Chisti Y, Banerjee U (2002) Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Biotech 22:245–279

    Google Scholar 

  • Berkaloff C, Rousseau B, Couté A, Casadevall E, Metzger P, Chirac C (1984) Variability of cell wall structure and hydrocarbon type in different strains of Botryococcus braunii. J Phycol 20:377–389

    Article  CAS  Google Scholar 

  • Borowitzka MA (2013a) Energy from microalgae: a short history. In: Borowitzka MA, Moheimani NR (eds) Algae for Biofuels and Energy. Springer, Dordrecht, pp 1–15

    Chapter  Google Scholar 

  • Borowitzka MA (2013b) High-value products from microalgae—their development and commercialisation. J Appl Phycol 25:743–756

    Article  CAS  Google Scholar 

  • Borowitzka MA, Moheimani NR (eds) (2013a) Algae for biofuels and energy. Springer, Dordrecht, 288 pp

    Google Scholar 

  • Borowitzka MA, Moheimani NR (2013b) Sustainable biofuels from algae. Mitig Adapt Strat Glob Chang 18:13–25

    Article  Google Scholar 

  • Cosgrove J, Borowitzka MA (2011) Chlorophyll fluorescence terminology: an introduction. In: Suggett DJ, Prásil OJ, Borowitzka MA (eds) Chlorophyll a fluorescence in aquatic sciences: methods and applications. Springer, Dordrecht, pp 1–17

    Google Scholar 

  • Crossland CJ, Barnes DJ, Borowitzka MA (1980) Diurnal lipid and mucus production in the staghorn coral Acropora acuminata. Mar Biol 60:81–89

    Article  CAS  Google Scholar 

  • de Boer K, Moheimani NR, Borowitzka MA, Bahri PA (2012) Extraction and conversion pathways for microalgae to biodiesel: a review focused on energy consumption. J Appl Phycol 24:1681–1698

    Article  CAS  Google Scholar 

  • Eroglu E, Melis A (2010) Extracellular terpenoid hydrocarbon extraction and quantitation from the green microalgae Botryococcus braunii var. Showa. Biores Technol 101:2359–2366

    Article  CAS  Google Scholar 

  • Flesch A, Beer T, Campbell PK, Batten D, Grant T (2013) Greenhouse gas balance and algae-based biodiesel. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, pp 233–254

    Chapter  Google Scholar 

  • Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  • Fon Sing S, Isdepsky A, Borowitzka MA, Moheimani NR (2013) Production of biofuels from microalgae. Mitig Adapt Strat Global Chang 18:47–72

    Article  Google Scholar 

  • Frenz J, Largeau C, Casadevall E (1989) Hydrocarbon recovery by extraction with a biocompatible solvent from free and immobilized cultures of Botryococcus braunii. Enzym Microb Technol 11:717–724

    Article  CAS  Google Scholar 

  • Fried B, Sherma J (1982) Thin-layer chromatography: techniques and applications. Marcel Dekker, New York, pp 105–122

    Google Scholar 

  • Griffiths MJ, Hille RP, Harrison STL (2012) Lipid productivity, settling potential and fatty acid profile of 11 microalgal species grown under nitrogen replete and limited conditions. J Appl Phycol 24:989–1001

    Article  CAS  Google Scholar 

  • Guschina I, Harwood J (2013) Algal lipids and their metabolism. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, pp 17–36

    Chapter  Google Scholar 

  • Hejazi MA, Holwerda E, Wijffels RH (2004) Milking microalga Dunaliella salina for β-carotene production in two-phase bioreactors. Biotechnol Bioeng 85:475–481

    Article  CAS  PubMed  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  CAS  PubMed  Google Scholar 

  • Ishimatsu A, Matsuura H, Sano T, Kaya K, Watanabe MM (2012) Biosynthesis of isoprene units in the C34 botryococcene molecule produced by Botryococcus braunii strain Bot-22. Proc Environ Sci 15:56–65

    Article  CAS  Google Scholar 

  • Kato S (1982) Laboratory culture and morphology of Colacium vesiculosum Ehrb. (Euglenophyceae). Jpn J Phycol 30:63–67

    Google Scholar 

  • Kleinegris DMM, van Es MA, Janssen M, Brandenburg WA, Wijffels RH (2011) Phase toxicity of dodecane on the microalga Dunaliella salina. J Appl Phycol 23:949–958

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Knothe G (2013) Production and properties of biodiesel from algal oils. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, pp 207–221

    Chapter  Google Scholar 

  • Lardon L, Hélias A, Sialve B, Steyer J-P, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 43:6475–6481

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Moheimani NR, Schenk PM (2012) Current research and perspectives of microalgal biofuels in Australia. Biofuels 3:427–439

    Article  CAS  Google Scholar 

  • Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66:486–496

    Article  CAS  PubMed  Google Scholar 

  • Moheimani NR (2013) Inorganic carbon and pH effect on growth and lipid productivity of Tetraselmis suecica and Chlorella sp (Chlorophyta) grown outdoors in bag photobioreactors. J Appl Phycol: 25:387–398

    Google Scholar 

  • Moheimani NR, Isdepsky A, Lisec J, Raes E, Borowitzka MA (2011) Coccolithophorid algae culture in closed photobioreactors. Biotechnol Bioeng 9:2078–2087

    Article  Google Scholar 

  • Moheimani NR, Webb JP, Borowitzka MA (2012) Bioremediation and other potential applications of coccolithophorid algae, a review. Algal Res 1:120–133

    Article  Google Scholar 

  • Moheimani NR, Borowitzka MA, Isdepsky A, Fon Sing S (2013a) Standard methods for measuring growth of algae and their composition. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, pp 265–284

    Chapter  Google Scholar 

  • Moheimani N, Cord-Ruwisch R, Raes E, Borowitzka MA (2013b) Non-destructive oil extraction from Botryococcus braunii (Chlorophyta). J Appl Phycol. doi:10.1007/s10811-013-0012-9

    Google Scholar 

  • Patton JS, Burris JE (1983) Lipid synthesis and extrusion by freshly isolated zooxanthellae (symbiotic algae). Mar Biol 75:131–136

    Article  CAS  Google Scholar 

  • Ranga Rao A, Sarada R, Ravishankar GA (2007) The influence of CO2 on growth and hydrocarbon production in Botryococcus braunii. J Microbiol Biotechnol 17:414–419

    CAS  PubMed  Google Scholar 

  • Redfield AC (1958) The biological control of chemical factors in the environment. Am Sci 46:230A–221

    Google Scholar 

  • Roessler PG, Chen L, Liu B, Dodge CN (2009) Secretion of fatty acids by photosynthetic organisms. USA Patent Application 0298143A1

  • Sauer T, Galinski EA (1998) Bacterial milking: a novel bioprocess for production of compatible solutes. Biotechnol Bioeng 57:306–313

    Article  CAS  PubMed  Google Scholar 

  • Sim S-J, An J-Y, Kim B-W (2001) Two-phase extraction culture of Botryococcus braunii producing long-chain unsaturated hydrocarbons. Biotechnol Lett 23:201–205

    Article  CAS  Google Scholar 

  • Stephens E, Ross IL, King Z, Mussgnug JH, Kruse O, Posten C, Borowitzka MA, Hankamer B (2010) An economic and technical evaluation of microalgal biofuels. Nat Biotechnol 28:126–128

    Article  CAS  PubMed  Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural waters. John Wiley and Sons, New York

    Google Scholar 

  • Sushchik NN, Kalacheva GS, Gladyshev MI (2001) Secretion of free fatty acids by prokaryotic and eukaryotic algae at optimal, supraoptimal, and suboptimal growth temperatures. Microbiology 70:542–547

    Article  CAS  Google Scholar 

  • US DOE (2010) National Algal Biofuels Technology Roadmap. U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Biomass program. Washington DC, pp 1–124.

  • White DA, Pagarette A, Rooks P, Ali ST (2013) The effect of sodium bicarbonate supplementation on growth and biochemical composition of marine microalgae cultures. J Appl Phycol 25:153–165

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly funded by the JSPS invitation fellowship program for research in Japan (long-term) to Navid R. Moheimani. The authors would like to thank Mr. Atsushi Nakazawa for his excellent technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navid R. Moheimani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moheimani, N.R., Matsuura, H., Watanabe, M.M. et al. Non-destructive hydrocarbon extraction from Botryococcus braunii BOT-22 (race B). J Appl Phycol 26, 1453–1463 (2014). https://doi.org/10.1007/s10811-013-0179-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-013-0179-0

Keywords

Navigation