Journal of Applied Phycology

, Volume 26, Issue 1, pp 665–674 | Cite as

Molecular characterization and homology modeling of a short-chain reductase/dehydrogenase from Gracilaria changii (Rhodophyta)

  • Nur Anisza Hanoum Naseron
  • Kok-Ang Lim
  • Seow-Ling Teh
  • Swee-Sen Teo
  • Adam Thean Chor Leow
  • Parameswari Namasivayam
  • Chai-Ling HoEmail author


Short-chain dehydrogenases (SDRs) which catalyze the dehydrogenation/reduction reaction have a wide range of substrate specificities. In this study, we report the molecular characterization of a transcript encoding SDR from the red seaweed, Gracilaria changii (Rhodophyta) as part of our effort to elucidate the functions of novel transcripts from this marine alga. The transcript, denoted as GcSDR, encodes a protein of 282 amino acids with a predicted size of approximately 31 kDa. The GxxxGxG coenzyme binding motif and YxxxK active-site motif of SDRs are well conserved in GcSDR. The coding sequence of GcSDR was cloned and expressed as recombinant protein in Escherichia coli BL21 (DE3) pLysS. Kinetic analysis of recombinant GcSDR using pyruvaldehyde dimethyl acetal as a substrate has a Km value of 116.52 mM and a Vmax value of 720 nmol product formed per minute per milligram. It has a higher affinity towards NADPH compared to NADP+ as a cofactor. Homology modeling showed that the three-dimensional structure of GcSDR has 34.5 % sequence identity to the SDR from a soil bacterium. Virtual screening of the possible substrates for GcSDR revealed that CMP-N-acetyl-beta-neuraminate (2-) which belongs to a group of amino sugars has the lowest binding energy among the compounds examined. The predicted cis-acting regulatory elements (CREs) at the 5′-flanking genomic sequence of GcSDR include CREs associated with abscisic acid, methyl jasmonic acid, light, anoxia, endosperm, low-temperature stress, and heat stress. The transcripts of GcSDR were found to accumulate in seaweed samples treated under low-salinity stress, thus suggesting its involvement during saline deprivation.


Gene expression Gracilaria changii Homology modeling Short-chain dehydrogenase 



This project was funded by the Fundamental Research Grant Scheme from the Ministry of Higher Education of Malaysia and the Intensified Research Grant for Priority Area (IRPA) no. 06-02-02-003 BTK/ER/01 from the Ministry of Science, Technology and Innovation (MOSTI) of Malaysia. Nur Anisza Hanoum Naseron was supported under the Graduate Research Fellowship (GRF) scheme provided by Universiti Putra Malaysia.

Supplementary material

10811_2013_137_MOESM1_ESM.doc (176 kb)
Supplementary Table S1 The possible substrates of GcSDR as predicted by virtual screening (DOC 176 kb)


  1. Benkert P, Tosatto SCE, Schomburg D (2008) QMEAN: a comprehensive scoring function for model quality assessment. Proteins Struct Funct Bioinforma 71:261–277CrossRefGoogle Scholar
  2. Chan C-X, Teo S-S, Ho C-L, Othman RY, Phang SM (2004) Optimisation of RNA extraction from Gracilaria changii (Gracilariales, Rhodophyta). J Appl Phycol 16:297–301CrossRefGoogle Scholar
  3. Cheng WH, Endo A, Zhou L, Penney J, Chen HC, Arroyo A, Leon P, Nambara E, Asami T, Seo M, Koshiba T, Sheen J (2002) A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell 14:2723–2743PubMedCentralPubMedCrossRefGoogle Scholar
  4. Favia AD, Nobeli I, Glaser F, Thornton JM (2008) Molecular docking for substrate identification: the short-chain dehydrogenases/reductases. J Mol Biol 375:855–874PubMedCrossRefGoogle Scholar
  5. Filling C, Berndt KD, Benach J, Knapp S, Prozorovski T, Nordling E, Ladenstein R, Jornvall H, Oppermann U (2002) Critical residues for structure and catalysis in short-chain dehydrogenases/reductases. J Biol Chem 277:25677–25684PubMedCrossRefGoogle Scholar
  6. Ghosh D, Sawicki M, Pletnev V, Erman M, Ohno S, Nakajin S, Duax WL (2001) Porcine carbonyl reductase: structural basis for a functional monomer in short-chain dehydrogenases/reductases. J Biol Chem 276:18457–18463PubMedCrossRefGoogle Scholar
  7. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723PubMedCrossRefGoogle Scholar
  8. Haeseleer F, Jang GF, Imanishi Y, Driessen CAGG, Matsumura M, Nelson PS, Palczewski K (2002) Dual-substrate specificity short-chain retinol dehydrogenase from the vertebrate retina. J Biol Chem 277:45537–45546PubMedCentralPubMedCrossRefGoogle Scholar
  9. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  10. He XY, Merz G, Mehta P, Schulz H, Yang S-Y (1999) Human brain short-chain L-3-hydroxyacyl coenzyme A dehydrogenase is a single-domain multifunctional enzyme: characterization of a novel 17β-hydroxysteroid dehydrogenase. J Biol Chem 274:15014–15019PubMedCrossRefGoogle Scholar
  11. Huang YW, Pineau I, Chang HJ, Azzi A, Bellemare V, Laberge S, Lin SX (2001) Critical residues for the specificity of cofactors and substrates in human estrogenic 17β-hydroxysteroid dehydrogenase 1: variants designed from the three-dimensional structure of the enzyme. Mol Endocrinol 15:2010–2020PubMedGoogle Scholar
  12. Irwin JJ, Shoichet BK (2005) ZINC—A free database of commercially available compounds for virtual screening. J Chem Inf Model 45:177–182PubMedCentralPubMedCrossRefGoogle Scholar
  13. Jornvall H, Persson B, Krook M, Atrian S, Gonzalez-Duarte R, Jeffrey J, Ghosh D (1995) Short-chain dehydrogenases/reductases (SDR). Biochemistry 34:6003–6013PubMedCrossRefGoogle Scholar
  14. Jornvall H, Hoog JO, Persson B (1999) SDR and MDR: completed genome sequences show these protein families to be large, of old origin, and of complex nature. FEBS Lett 445:261–264PubMedCrossRefGoogle Scholar
  15. Kallberg Y, Persson B (2006) Prediction of coenzyme specificity in dehydrogenases⁄reductases: a hidden Markov model-based method and its application on complete genomes. FEBS J 273:1177–1184PubMedCrossRefGoogle Scholar
  16. Kallberg Y, Oppermann U, Jornvall H, Persson B (2002) Short-chain dehydrogenase/reductase (SDR) relationships: a large family with eight clusters common to human, animal, and plant genomes. Protein Sci 11:636–641PubMedCentralPubMedCrossRefGoogle Scholar
  17. Kanehisa M, Goto S (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 28:27–30PubMedCentralPubMedCrossRefGoogle Scholar
  18. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2012) KEGG for integration and interpretation of large-scale molecular datasets. Nucleic Acids Res 40:D109–D114PubMedCentralPubMedCrossRefGoogle Scholar
  19. Kusaba M, Ito H, Morita R, Iida S, Sato Y, Fujimoto M, Kawasaki S, Tanaka R, Hirochika H, Nishimura M, Tanaka A (2007) Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence. Plant Cell 19:1362–1375PubMedCentralPubMedCrossRefGoogle Scholar
  20. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291CrossRefGoogle Scholar
  21. Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, de Peer YV, Rouze P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327PubMedCentralPubMedCrossRefGoogle Scholar
  22. Liu S, Huang C, Li D, Ren W, Zhang H, Qi M, Li X, Yu L (2007) Molecular cloning and expression analysis of a new gene for short-chain dehydrogenase/reductase 9. Acta Biochim Pol 54:213–218PubMedGoogle Scholar
  23. Oppermann UCT, Filling C, Berndt KD, Persson B, Benach J, Ladenstein R, Jornvall H (1997) Active site directed mutagenesis of 3α/17α-hydroxysteroid dehydrogenase establishes differential effects on short-chain dehydrogenase/reductase reactions. Biochemistry 36:34–40PubMedCrossRefGoogle Scholar
  24. Persson B, Krook M, Jornvall H (1991) Characteristics of short-chain alcohol dehydrogenases and related enzymes. Eur J Biochem 200:537–543PubMedCrossRefGoogle Scholar
  25. Persson B, Krook M, Jornvall H (1995) Short-chain dehydrogenases/reductases. Adv Exp Med Biol 372:383–395PubMedCrossRefGoogle Scholar
  26. Persson B, Kallberg Y, Oppermann U, Jornvall H (2003) Coenzyme-based functional assignments of short-chain dehydrogenases/reductases (SDRs). Chem Biol Interact 143–144:271–278PubMedCrossRefGoogle Scholar
  27. Rossmann MG, Liljas A, Branden CI, Banaszak LJ (1975) Evolutionary and structural relationships among dehydrogenases. In: Boyer PD (ed) The enzymes, vol 11, 3rd edn. Academic, New York, pp 61–102Google Scholar
  28. Sato Y, Morita R, Katsuma S, Nishimura M, Tanaka A, Kusaba M (2009) Two short-chain dehydrogenase/reductases, NON-YELLOW COLORING 1 and NYC1-LIKE, are required for chlorophyll b and light-harvesting complex II degradation during senescence in rice. Plant J 57:120–131PubMedCrossRefGoogle Scholar
  29. Scherbak N, Ala-Haivala A, Brosche M, Bower N, Strid H, Gittins JR, Grahn E, Eriksson LA, Strid A (2011) The pea SAD short-chain dehydrogenase/reductase: quinone reduction, tissue distribution, and heterologous expression. Plant Physiol 155:1839–1850PubMedCentralPubMedCrossRefGoogle Scholar
  30. Stekhanova TN, Mardanov AV, Bezsudnova EY, Gumerov VM, Ravin NV, Skryabin KG, Popov VO (2010) Characterization of thermostable short-chain alcohol dehydrogenase from hyperthermophilic archaeon Thermococcus sibiricus. Appl Environ Microbiol 76:4096–4098PubMedCentralPubMedCrossRefGoogle Scholar
  31. Su J, Chai X, Kahn B, Napoli JL (1998) cDNA cloning, tissue distribution, and substrate characteristics of a cis-retinol/3α-hydroxysterol short-chain dehydrogenase isozyme. J Biol Chem 273:17910–17916PubMedCrossRefGoogle Scholar
  32. Teo S-S, Ho C-L, Teoh S, Lee W-W, Tee J-M, Rahim RA, Phang SM (2007) Analyses of expressed sequence tags from an agarophyte, Gracilaria changii (Gracilariales, Rhodophyta). Eur J Phycol 42:41–46CrossRefGoogle Scholar
  33. Teo S-S, Ho C-L, Teoh S, Rahim RA, Phang SM (2009) Transcriptomic analysis of Gracilaria changii (Rhodophyta) in response to hyper- and hypo-osmotic stresses. J Phycol 45:1093–1099CrossRefGoogle Scholar
  34. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties, and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCentralPubMedCrossRefGoogle Scholar
  35. Van der Oost J, Voorhorst WGB, Kengen SWM, Geerling ACM, Wittenhorst V, Gueguen Y, de Vos WM (2001) Genetic and biochemical characterization of a short-chain alcohol dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus. Eur J Biochem 268:3062–3068PubMedCrossRefGoogle Scholar
  36. Wierenga RK, De Maeyer MCH, Hol WJ (1985) Interaction of pyrophosphate moieties with α-helixes in dinucleotide binding proteins. Biochemistry 24:1346–1357CrossRefGoogle Scholar
  37. Yang JM, Chen CC (2004) GEMDOCK: a generic evolutionary method for molecular docking. Proteins Struct Funct Genet 55:288–304PubMedCrossRefGoogle Scholar
  38. Zeevaart JA, Creelman RA (1988) Metabolism and physiology of abscisic acid. Annu Rev Plant Physiol Plant Mol Biol 39:439–473CrossRefGoogle Scholar
  39. Zhou YH, Ragan MA (1993) cDNA cloning and characterization of the nuclear gene encoding chloroplast glyceraldehyde-3-phosphate dehydrogenase from the marine red alga Gracilaria verrucosa. Curr Genet 23:483–489PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Nur Anisza Hanoum Naseron
    • 1
  • Kok-Ang Lim
    • 1
  • Seow-Ling Teh
    • 1
  • Swee-Sen Teo
    • 1
  • Adam Thean Chor Leow
    • 1
    • 2
  • Parameswari Namasivayam
    • 1
  • Chai-Ling Ho
    • 1
    Email author
  1. 1.Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular SciencesUniversiti Putra MalaysiaSerdangMalaysia
  2. 2.Institute of BiosciencesUniversiti Putra MalaysiaSerdangMalaysia

Personalised recommendations