Skip to main content
Log in

Microalgae growth on concentrated human urine

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

In this study, for the first time, a microalga was grown on non-diluted human urine. The essential growth requirements for the species Chlorella sorokiniana were determined for different types of human urine (fresh, hydrolysed, male and female). Batch experimental results using microtiter plates showed that both fresh and synthetic urine supported rapid growth of this species, provided additional trace elements (Cu, Fe, Mn, and Zn) were added. When using hydrolysed urine instead of fresh urine, additional magnesium had to be added as it precipitates during hydrolysis of urea. C. sorokiniana was able to grow on non-diluted urine with a specific growth rate as high as 0.104 h−1 under light-limited conditions (105 μmol photons m−2 s−1), and the growth was not inhibited by ammonium up to a concentration of 1,400 mg NH4 +-N L−1. The highest growth rate on human urine was as high as 0.158 h−1. Because it was demonstrated that concentrated urine is a rich and good nutrient source for the production of microalgae, its application for a large-scale economical and sustainable microalgae production for biochemicals, biofuels and biofertilizers becomes feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adamsson M (2000) Potential use of human urine by greenhouse culturing of microalgae (Scenedesmus acuminatus), zooplankton (Daphnia magna) and tomatoes (Lycopersicon). Ecol Eng 16:243–254

    Article  Google Scholar 

  • APHA (1998) Standard methods for the examination of water and wastewater, 22nd edn. American Public Health Association, Washington D.C

    Google Scholar 

  • Azov Y, Goldman JC (1982) Free ammonia inhibition of algal photosynthesis in intensive cultures. Appl Environ Microb 43:735–739

    CAS  Google Scholar 

  • Benini S, Rypniewski WR, Wilson KS, Miletti S, Ciurli S, Mangani S (1999) A new proposal for urease mechanism based on the crystal structures of the native and inhibited enzyme from Bacillus pasteurii: why urea hydrolysis costs two nickels. Structure 7:205–216

    Article  PubMed  CAS  Google Scholar 

  • Birdsey EC, Lynch VH (1962) Utilization of nitrogen compounds by unicellular algae. Science 137:763–764

    Article  PubMed  CAS  Google Scholar 

  • Chang Y, Wu Z, Bian L, Feng D, Leung DYC (2013) Cultivation of Spirulina platensis for biomass production and nutrient removal from synthetic human urine. Appl Energ 102:427–431

    Article  CAS  Google Scholar 

  • Cuaresma M, Janssen M, Vílchez C, Wijffels RH (2009) Productivity of Chlorella sorokiniana in a short light-path (SLP) panel photobioreactor under high irradiance. Biotechnol Bioeng 104:352–359

    Article  PubMed  CAS  Google Scholar 

  • Eyster C (1978) Nutrient concentration requirements for Chlorella Sorokiniana. Ohio J Sci 78:79–81

    CAS  Google Scholar 

  • Feng D, Wu Z (2006) Culture of Spirulina platensis in human urine for biomass production and O2 evolution. J Zhejiang Univ Sci B 7:34–37

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Janssen M, Kuijpers TC, Veldhoen B, Ternbach MB, Tramper J, Mur LR, Wijffels RH, Osinga JTJGB, Wijffels RH (1999) Specific growth rate of Chlamydomonas reinhardtii and Chlorella sorokiniana under medium duration light/dark cycles: 13–87 s. J Biotech 70:323–333

    Article  CAS  Google Scholar 

  • Kliphuis AMJ, Winter L, Vejrazka C, Martens DE, Janssen M, Wijffels RH (2010) Photosynthetic efficiency of Chlorella sorokiniana in a turbulently mixed short light-path photobioreactor. Biotechnol Progr 26:687–696

    Article  CAS  Google Scholar 

  • Kovacevic V, Wesseler J (2010) Cost-effectiveness analysis of algae energy production in the EU. Energ Policy 38:5749–5757

    Article  Google Scholar 

  • Kuntke P, Śmiech KM, Bruning H, Zeeman G, Saakes M, Sleutels THJA, Hamelers HVM, Buisman CJN (2012) Ammonium recovery and energy production from urine by a microbial fuel cell. Water Res 46:2627–2636

    Article  PubMed  CAS  Google Scholar 

  • Mandalam RK, Palsson B (1998) Elemental balancing of biomass and medium composition enhances growth capacity in high-density Chlorella vulgaris cultures. Biotechnol Bioeng 59:605–611

    Article  PubMed  CAS  Google Scholar 

  • Maurer M, Pronk W, Larsen TA (2006) Treatment processes for source-separated urine. Water Res 40:3151–3166

    Article  PubMed  CAS  Google Scholar 

  • Maurer M, Schwegler P, Larsen TA (2003) Nutrients in urine: energetic aspects of removal and recovery. Water Sci Technol 48:37–46

    PubMed  CAS  Google Scholar 

  • McBride L, Chorney W, Skok J (1971) Growth of Chlorella in relation to boron supply. Bot Gaz 132:10–13

    Article  CAS  Google Scholar 

  • Norsker N-H, Barbosa MJ, Vermuë MH, Wijffels RH (2011) Microalgal production - a close look at the economics. Biotechnol Adv 29:24–27

    Article  PubMed  CAS  Google Scholar 

  • O'Kelley JC (1968) Mineral nutrition of algae. Annu Rev Plant Phys 19:89–112

    Article  Google Scholar 

  • Oh-Hama T, Miyachi S (1988) Chlorella. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, Cambridge, pp 3–26

    Google Scholar 

  • Pittman JK, Dean AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Biores Technol 102:17–25

    Article  CAS  Google Scholar 

  • Redfield AC (1958) The biological control of chemical factors in the environment. Am Sci 230A:205–221

    Google Scholar 

  • Ronteltap M, Maurer M, Gujer W (2007a) The behaviour of pharmaceuticals and heavy metals during struvite precipitation in urine. Water Res 41:1859–1868

    Article  PubMed  CAS  Google Scholar 

  • Ronteltap M, Maurer M, Gujer W (2007b) Struvite precipitation thermodynamics in source-separated urine. Water Res 41:977–984

    Article  PubMed  CAS  Google Scholar 

  • Sorokin C (1967) New high-temperature Chlorella. Science 158:1204–1205

    Article  PubMed  CAS  Google Scholar 

  • Sydney EB, Sturm W, de Carvalho JC, Thomaz-Soccol V, Larroche C, Pandey A, Soccol CR (2010) Potential carbon dioxide fixation by industrially important microalgae. Biores Technol 101:5892–5896

    Article  CAS  Google Scholar 

  • Tsalev DL (1984) Atomic absorption spectrometry in occupational and environmental health practice. Volume II: Determination of individual elements. CRC Press Inc, Boca Raton

    Google Scholar 

  • Udert KM, Larsen TA, Biebow M, Gujer W (2003) Urea hydrolysis and precipitation dynamics in a urine-collecting system. Water Res 37:2571–2582

    Article  PubMed  CAS  Google Scholar 

  • Yang C, Liu H, Li M, Yu C, Yu G (2008) Treating urine by Spirulina platensis. Acta Astronaut 63(7–10):1049–1054

    Article  CAS  Google Scholar 

  • Zeeman G, Kujawa-Roeleveld K (2011) Resource recovery from source separated domestic waste(water) streams; full scale results. Water Sci Technol 64:1987–1992

    Article  PubMed  CAS  Google Scholar 

  • Zeeman G, Kujawa K, Mes T, Hernandez H, Graaff M, Abu-Ghunmi L, Mels A, Meulman B, Temmink H, Buisman C, Van Lier J, Lettinga G (2008) Anaerobic treatment as a core technology for energy, nutrients and water recovery from source-separated domestic waste(water). Water Sci Technol 57:1207–1212

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The project is financially supported by Innowater funding provided by the Dutch Department of Economic Affairs. The Ph.D. student is financially granted by the Ministry of Science and Technology, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanjana Tuantet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuantet, K., Janssen, M., Temmink, H. et al. Microalgae growth on concentrated human urine. J Appl Phycol 26, 287–297 (2014). https://doi.org/10.1007/s10811-013-0108-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-013-0108-2

Keywords

Navigation